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1Introduction

This report documents the continued development of the tool Concurrency
Workbench - Aalborg Edition (Caal) which started in the fall semester of
2014 [14]. Caal supports modelling, visualization, and verification of concur-
rent systems. Concurrent systems are modelled using the well-known process
algebra Calculus of Communicating Systems (CCS) [8], and can be graphi-
cally explored, which is an invaluable feature when debugging. Verification is
supported both through the equivalence checking approach, where an imple-
mentation is tested against a specification, and through the model checking
approach, where it is determined if a system (or part of it) enjoys certain prop-
erties. All verification algorithms are based on the notion of dependency graphs
and use on-the-fly exploration of the state space.

Other tools with similar functionality to Caal already exist, where the
Edinburgh Concurrency Workbench (CWB) [11] is the most prominent. CWB
is a powerful tool with support for multiple process algebras, equivalences,
model checking, etc. and has served as a great source of inspiration for Caal.
Unfortunately, CWB is no longer maintained, there are no official binaries
available, and the tool cannot be built with newer versions of the Standard
ML compiler. As a result, simply acquiring and installing the tool can be
difficult. Furthermore, the tool does not have a graphical user interface and
can only be used through a command-line interface. Having a graphical user
interface allows for a wider range of visualization and debugging options and
makes for a more engaging user experience. The tool Concurrency Workbench
of the New Century (CWB-NC) [3] was created as a continuation of CWB, but
now suffers from some of the same problems. Namely that it can no longer
be downloaded from the official website and that the last update was in the
year 2000. Caal has been designed as a web application to avoid some of the
aforementioned problems. In particular, no local installation is required and
portability is ensured across all major operating systems.

Caal was developed primarily to support the course Semantics and Veri-
fication offered at Aalborg University to Computer Science and Software En-
gineering students at their 6th semester, and has been tested by the students
following the course during the spring of 2015. Being an educational tool, Caal
does not aim to be the fastest nor the most powerful tool, but instead on offer-
ing visualization and debugging tools to promote learning. In this project we
extend Caal with interactive games for process equivalence, where the user
plays a game against the computer in an attempt to either prove or disprove
the result of a given equivalence checking problem. Games are useful in an
educational context as a way of visualizing counterexamples for equivalence
checking problems.

Real-time systems often have strict timing constraints that cannot be ex-
pressed using CCS alone. To accommodate this, we extend Caal with support
for the timed process algebra known as Timed CCS. In connection with this,
we add timed variants of the existing equivalences, support for model checking
on timed systems, and timed games.

11



12 CHAPTER 1. INTRODUCTION

Inspired by the rules of the aforementioned games, we introduce a general
equivalence relation, which can be used to define a wide range of equivalences
and preorders. The relation takes a set of parameters corresponding to the rules
of the game which characterizes the equivalence that we are trying to define.
We then show how problems of this type can be verified using dependency
graphs. Finally, we extend this general equivalence relation to cover timed
equivalences and preorders.

1.1 Preliminaries

We extend the set of all natural numbers N with ∞ and 0, and define it as
N∞ = N∪{∞}, N0 = N∪{0}, N∞0 = N∪{∞, 0}, and assume that∞+n =∞
and ∞− n =∞ for any n ∈ N0.

We model processes using Labelled Transition Systems (LTSs). An LTS
consists of a set of states (or processes), a set of actions, and a transition
relation.

Definition 1.1 - Labelled Transition System
An LTS is a triple (Proc, Act,→ ) where Proc is a set of states, Act is a set of
actions where τ ∈ Act, and →⊆ Proc× Act× Proc is the transition relation.

If a state p can perform an α-labelled transition and become p′ we write
p
α−→ p′, which is also called a strong transition.
The τ -actions are internal actions which are supposed to be unobservable.

The weak transition relation ⇒, defined in Definition 1.2, abstracts away from
τ -actions.

Definition 1.2 - Weak Transition
Let (Proc, Act,→ ) be an LTS and let s, t ∈ Proc be states. For each action
α ∈ Act we write s α=⇒ t if and only if either

• α 6= τ and there are states s′ and t′ such that

s
(
τ−→
)∗
s′

α−→ t′
(
τ−→
)∗
t

• or α = τ and s
(
τ−→
)∗
t,

where we write
(
τ−→
)∗

for the reflexive and transitive closure of the relation τ−→.

In what follows, we use the symbol ↪−→ to denote either the strong transition
relation → or the weak transition relation ⇒.

1.1.1 Equivalences and Preorders
We now define a number of weak and strong preorders and equivalences between
states in an LTS using the transition relation ↪−→.
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Definition 1.3 - Simulation
A binary relation R over the set of states of an LTS is a simulation if and only
if whenever (s1, s2) ∈ R and α is an action:

if s1
α−→ s′1 then there is a transition s2

α
↪−→ s′2 such that (s′1, s′2) ∈ R.

A state s is said to simulate a state t if and only if there is a simulation
that relates them. From now on the relation @∼ will be referred to as strong
simulation when ↪−→ = −→, and @

≈ will be referred to as weak simulation when
↪−→= =⇒.

Having defined simulation, we now use this to define simulation equivalence,
which is the symmetric case of simulation.

Definition 1.4 - Simulation Equivalence
Two states s and t are strong simulation equivalent if and only if s @∼ t and
t @∼ s, and weak simulation equivalent if and only if s @

≈ t and t @≈ s. From
now on the relation ' will be referred to as strong simulation equivalence and
u will be referred to as weak simulation equivalence.

We now define the perhaps most well-known notion of equivalence, namely
that of bisimulation equivalence, introduced by David Park in 1981 [9] and
popularized by Robin Milner in 1989 [7].

Definition 1.5 - Bisimulation
A binary relation R over the set of states of an LTS is a bisimulation if and
only if whenever (s1, s2) ∈ R and α is an action:

if s1
α−→ s′1 then there is a transition s2

α
↪−→ s′2 such that (s′1, s′2) ∈ R and

if s2
α−→ s′2 then there is a transition s1

α
↪−→ s′1 such that (s′1, s′2) ∈ R.

Two states s and t are bisimilar if and only if there is a bisimulation that relates
them. From now on the relation ∼ will be referred to as strong bisimilarity
when ↪−→=−→, and ≈ will be referred to as weak bisimilarity when ↪−→= =⇒.

It is easy to confuse simulation equivalence and bisimulation equivalence
since their respective definitions look similar, but there is an important differ-
ence. We now illustrate this difference with an example.

Example 1.6
Consider the two states s1 and t1 shown in Figure 1.1. To show that s1 ' t1
we must show that s1 @∼ t1 and that t1 @∼ s1. We show a strong simulation R1
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such that (s1, t1) ∈ R1 and a strong simulation R2 such that (t1, s1) ∈ R2:

R1 = {(s1, t1), (s2, t2), (s3, t3)} ,
R2 = {(t1, s1), (t2, s2), (t3, s2), (t3, s3)} .

As we can see, s1 and t1 are indeed strong simulation equivalent, but they
are not strongly bisimilar because of the transition t1

a−→ t3 which can only be
matched by the transition s1

a−→ s2. However, the state s2 can perform the
transition s2

b−→ s3 which t3 cannot match.

s1

s2

s3

a

b

t1

t2 t3

a a

b

Figure 1.1: Two simulation equivalent states s1 and t1.

We now show an example to illustrate the difference between strong bisim-
ulation and weak bisimulation.

Example 1.7
We relabel all b-actions in the LTS shown in Figure 1.1 to τ -actions. The new
LTS is shown in Figure 1.2. In Example 1.6 we showed that s1 6∼ t1, and clearly
the relabelling does not change this fact. To prove that s1 ≈ t1 we show a weak
bisimulation R such that (s1, t1) ∈ R:

R = {(s1, t1), (s2, t2), (s2, t3), (s3, t2), (s3, t3)} .

We have now shown that s1 ≈ t1.
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s1

s2

s3

a

τ

t1

t2 t3

a a

τ

Figure 1.2: Two weakly bisimilar states s1 and t1.

Another way to look at process behavior is by considering their traces.
Traces are defined in Definition 1.8.

Definition 1.8 - Traces
A strong trace from a state s is a sequence of actions α1 · · ·αn ∈ Act∗ where
n ≥ 0 such that there exists a sequence of strong transitions

s0
α1−→ s1

α2−→ . . .
αn−1−−−→ sn−1

αn−−→ sn,

for some states s1, . . . , sn.
A weak trace from a state s is a sequence of actions α1 · · ·αn ∈ (Act\{τ})∗

where n ≥ 0 such that there exists a sequence of weak transitions

s0
α1=⇒ s1

α2=⇒ . . .
αn−1===⇒ sn−1

αn=⇒ sn,

for some states s1, . . . , sn.
We write Traces→(s) for the collection of all strong traces of s, and

Traces⇒(s) for the collection of all weak traces of s.

Having defined strong and weak traces we can now define trace inclusion.

Definition 1.9 - Trace Inclusion
Let s and t be states in an LTS. We say that s is a trace inclusion of t if and
only if

Traces↪→(s) ⊆ Traces↪→(t).

From now on the relation ⊂∼ will be referred to as strong trace inclusion when
↪−→ = −→, and ⊂≈ will be referred to as weak trace inclusion when ↪−→ = =⇒.

We now define trace equivalence, which is the symmetric case of trace inclusion.
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Definition 1.10 - Trace Equivalence
Let s and t be states in an LTS. We say that s and t are trace equivalent if
and only if

Traces↪→(s) = Traces↪→(t).

From now on the relation 'T will be referred to as strong trace equivalence
when ↪−→ = −→, and uT will be referred to as weak trace equivalence when
↪−→ = =⇒.

We now show an example of strong trace equivalence.

Example 1.11
Consider the two states s1 and t1 shown in Figure 1.3. To show that s1 'T t1
we must show that Traces→(s1 ) = Traces→(t1 ). We show the traces of s1 and
the traces of t1:

Traces→(s1 ) = {ε, a, ab, ac}
Traces→(t1 ) = {ε, a, ab, ac}

As we can see, s1 and t1 are indeed strong trace equivalent. As an aside, s1
and t1 are not strong simulation equivalent since s1 6@∼ t1.

s1

s2

s3

a

cb

t1

t2 t3

t4

a a

b c

Figure 1.3: Two trace equivalent states s1 and t1.

1.1.2 CCS
CCS is a process algebra for modelling concurrent systems introduced by Robin
Milner in 1980 [8], and was considered a major breakthrough at the time. We
now give an informal introduction to the basic operators of CCS, and show
how these operators can be combined to model complex systems.

The most basic operator in CCS is the action prefixing operator denoted
by a period. With this operator we can model processes such as

a.0 ,



1.1. PRELIMINARIES 17

which means that after performing the action a, the process becomes the 0
(nil) process. The 0 process is a special process which cannot perform any
action whatsoever. Actions can be thought of as inputs (e.g. a) and outputs
(e.g. a).

Now let us look at a more interesting example. We model a person driving
a car, and give it the name Driver:

Driver def= drive.0 .

This process can perform the action drive and become the 0 process. With
process names we can also make recursive definitions. Consider the process

Driver def= drive.Driver ,

which can perform the action drive and become the Driver process once again.
At some unfortunate point in time the driver might crash, modelled with

the choice operator + as

Driver def= drive.Driver + drive.crash.0 ,

which means that the driver can nondeterministically continue driving or crash
and become the 0 process. In order to protect the driver, we create an airbag:

Airbag def= crash.inflate.Airbag .

For the sake of example, we assume that the driver can continue driving after
the airbag has been inflated, which we model as

Driver def= drive.Driver + drive.crash.inflate.Driver .

The driver and the airbag are still separate entities, performing actions
independent of each other. To have the processes run concurrently we can
combine them using the parallel composition operator | as

Car def= Driver | Airbag .

The driver and the airbag can now communicate over their shared communi-
cation channels, crash and inflate, resulting in only a τ -action being visible to
outside observers. However, they may also proceed to execute independently.
We can force the driver and the airbag to communicate by restricting commu-
nication on the crash and inflate channels:

Car def= (Driver | Airbag) \ {crash, inflate} .

This means that the only available action will be τ , effectively forcing the
Driver and the Airbag processes to communicate.

1.1.2.1 Syntax and Semantics

We now formally define the syntax and semantics of CCS. We assume a finite
collection of input names A, and the set of output names A = {a | a ∈ A}. Let
L = A∪A be the set of labels and let Act = L∪ {τ} be the set of actions. We
assume a finite collection K of process names or process constants.
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Definition 1.12 - CCS Syntax
The collection of CCS expressions P is given by the following grammar:

P ::= K
∣∣∣ α.P ∣∣∣ Σi∈IPi

∣∣∣ | i∈IPi ∣∣∣ P [f ]
∣∣∣ P \ L ∣∣∣ 0

where K ∈ K is a process name, α ∈ Act is an action, I is a finite index
set, L ∈ A is a set of labels, and f : Act −→ Act is a function satisfying the
constraints:

f(τ) = τ,

f(a) = f(a) for each label a.

By convention we have that τ = τ .
The behavior of each process name is given by its defining equation. There

is one definition for each K ∈ K:

K
def= P,

where P ∈ P and the constant K may appear in P .

The operators have decreasing binding strength in the following order:

1. Restriction and relabelling (the tightest binding).
2. Action prefixing.
3. Parallel composition and summation.

Definition 1.13 - CCS Semantics
The semantics of CCS is given by the following SOS rules:

SUM
Pj

α−→ P ′j(∑
i∈I
Pi

)
α−→ P ′j

where j ∈ I ACT
α.P

α−→ P

RES P
α−→ P ′

P \ L α−→ P ′ \ L
α, α /∈ L CON P

α−→ P ′

K
α−→ P ′

K
def= P

COM1
Pj

α−→ P ′j(
|
i∈I
Pi

)
α−→

(
|

i∈I\{j}
Pi | P ′j

) where j ∈ I REL P
α−→ P ′

P [f ] f(α)−−−→ P ′[f ]

COM2
Pj

a−→ P ′j Pk
a−→ P ′k(

|
i∈I
Pi

)
τ−→

(
|

i∈I\{j,k}
Pi | P ′j | P ′k

) where j, k ∈ I and j 6= k

where α ∈ Act, a ∈ L, and I is a finite index set.
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1.1.2.2 Unguarded Recursion

A desired property is that any CCS expression has finitely many derivations
that are all finite. First we define what it means for a process to be guarded.

Definition 1.14 - Guarded Process Constant
A process constant K is guarded in a CCS expression P , if every occurrence of
K in P is within the scope of some action prefixing.

If a process constant is not guarded, we say it is unguarded. We provide an
alternative definition in terms of a reference graph.

Definition 1.15 - Reference Graph
A reference graph is a directed graph described by a tuple (V,E), where the
vertices V = K are constants and E ⊆ V × V . For any CCS definition K def= P

we have (K,K ′) ∈ E if and only if K ′ occurs in P unguarded (not in the scope
of action prefixing).

Consider the following process definitions:

P
def= Q+ a.R ,

Q
def= R+ b.0 ,

R
def= P + c.R+R .

Figure 1.4 shows the corresponding reference graph.

P

Q R

Figure 1.4: Cycles representing unguarded recursion.

The edges in the reference graph illustrate that P depends on Q, which
depends on R, which depends on P and itself, leading to a cycle in the reference
graph. Cycles in the reference graph represent unguarded recursion.

Definition 1.16 - Weak Guardedness
A CCS program is weakly guarded if and only if its reference graph has no
cycles.
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1.1.2.3 Structural Congruence

We now present a number of structural congruence rules which preserve behav-
ior (bisimulation equivalence). The parallel operator | and the choice operator
+ are commutative and associative, and the choice operator is idempotent. In
the following P , R, and Q are processes, L is a set of labels, and f is a rela-
belling function. Table 1.1 shows rules for associativity, Table 1.2 shows rules
for process equivalence, and Table 1.3 shows congruence rules for CCS.

(P 1
1 + P 1

2 + · · ·+ P 1
n1 ) + (P 2

1 + P 2
2 + · · ·+ P 2

n2 ) + · · ·+ (P m
1 + P m

2 + · · ·+ P m
nm

) ≡
(P 1

1 + P 1
2 + · · ·+ P 1

n1 + P 2
1 + P 2

2 + · · ·+ P 2
n2 + · · ·+ P m

1 + P m
2 + · · ·+ P m

nm
)

(P 1
1 | P 1

2 | · · · | P 1
n1 ) | (P 2

1 | P 2
2 | · · · | P 2

n2 ) | · · · | (P m
1 | P m

2 | · · · | P m
nm

) ≡
(P 1

1 | P 1
2 | · · · | P 1

n1 | P
2
1 | P 2

2 | · · · | P 2
n2 | · · · | P

m
1 | P m

2 | · · · | P m
nm

)

Table 1.1: Associativity rules.

(P \ L1) \ L2 ≡ P \ (L1 ∪ L2)
(P [f1]) [f2] ≡ P [f2 ◦ f1]∑

i∈I
Pi ≡

∑
i∈I\Z

Pi where Z = {i ∈ I | Pi ≡ 0}

|
i∈I
Pi ≡ |

i∈I\Z
Pi where Z = {i ∈ I | Pi ≡ 0}

0 \ L ≡ 0
0 [f ] ≡ 0
P \ ∅ ≡ P

Table 1.2: Equivalence rules.

P ≡ Q
α.P ≡ α.Q

P ≡ Q
P [f ] ≡ Q[f ]

P ≡ Q
P \ L ≡ Q \ L

Pi ≡ Qi for each i ∈ I∑
i∈I Pi ≡

∑
i∈I Qi

Pi ≡ Qi for each i ∈ I
| i∈IPi ≡ | i∈IQi

Table 1.3: Congruence rules.

1.1.3 Recursive HML
In the following we present the property language known as Hennessy-Milner
Logic (HML), which was introduced by Matthew Hennessy and Robin Milner
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in 1985 [4]. We will present an extension of HML with a single recursively
defined variable [5].

Definition 1.17 - Recursive HML Syntax
Let (Proc, Act,→ ) be an LTS. The set MX of HML formulas with a single
recursively defined variable X is given by the following abstract syntax:

F,G ::= tt
∣∣∣ ff

∣∣∣ F ∧G ∣∣∣ F ∨G ∣∣∣ 〈α〉F ∣∣∣ [α]F
∣∣∣ 〈〈α〉〉F ∣∣∣ [[α]]F

∣∣∣ X,
where α ∈ Act is an action. We use tt and ff to denote “true” and “false”,
respectively. The variable X is defined by an equation of the form

X
min= FX or X

max= FX ,

where FX is a formula which may contain occurrences ofX. IfA = {a1, . . . , an} ⊆
Act and n ≥ 0 we use the abbreviations:

〈A〉F for the formula 〈a1〉F ∨ . . . ∨ 〈an〉F ,

〈〈A〉〉F for the formula 〈〈a1〉〉F ∨ . . . ∨ 〈〈an〉〉F ,

[A]F for the formula [a1]F ∧ . . . ∧ [an]F ,

[[A]]F for the formula [[a1]]F ∧ . . . ∧ [[an]]F .

The semantics of a formula F (which may contain a single variable X) is
interpreted as a function

OF : P(Proc)→ P(Proc),

which returns the set of states that satisfy F when given the set of states that
are assumed to satisfy X.

Definition 1.18 - Recursive HML Semantics
Let (Proc, Act,→) be an LTS. For each S ⊆ Proc and formula F we define
OF (S) inductively as follows:

OX(S) = S,

Ott(S) = Proc,

Off (S) = ∅,
OF1∧F2(S) = OF1(S) ∩ OF2(S),
OF1∨F2(S) = OF1(S) ∪ OF2(S),
O〈a〉F (S) = 〈·a·〉OF (S),
O[a]F (S) = [·a·]OF (S),
O〈〈a〉〉F (S) = 〈〈·a·〉〉OF (S),
O[[a]]F (S) = [[·a·]]OF (S),
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where we use the functions 〈·a·〉 , [·a·] , 〈〈·a·〉〉 , [[·a·]] : P(Proc) → P(Proc)
which we define as:

〈·a·〉S = {p ∈ Proc | p a−→ p′ and p′ ∈ S for some p′},

[·a·]S = {p ∈ Proc | p a−→ p′ implies p′ ∈ S for each p′},

〈〈·a·〉〉S = {p ∈ Proc | p a=⇒ p′ and p′ ∈ S for some p′},

[[·a·]]S = {p ∈ Proc | p a=⇒ p′ implies p′ ∈ S for each p′}.

Let the set JXK ⊆ Proc be the set of states that satisfy X. The set JXK
can be interpreted as a solution to the recursive equation

JXK = OFX
(JXK).

Since the function OFX
is a monotonic function over the complete lattice

(P(Proc),⊆) we have by Tarski’s fixed-point theorem [10] that it has unique
minimum and maximum fixed-points given by:

minOFX
=
⋂
{S ⊆ Proc | OFX

(S) ⊆ S} ,

maxOFX
=
⋃
{S ⊆ Proc | S ⊆ OFX

(S)} .

Definition 1.19 - Satisfaction Relation
Let s be a state in an LTS and let FX be an HML formula with a single
recursively defined variable X. We say that “s satisfies FX” written as s |= FX
if and only if

s ∈ minOFX

when X is defined as X min= FX , and

s ∈ maxOFX

when X is defined as X max= FX .

Example 1.20
Consider the process shown in Figure 1.5. We have the recursively defined
property

X
min= [Act] ff ∨ 〈Act〉X,

which expresses the property of possible deadlock. We start by applying the
function OFX

to the empty set in order to find the minimum fixed-point:

OFX
(∅) = ([·a·] ∅ ∩ [·b·] ∅) ∪ (〈·a·〉 ∅ ∪ 〈·b·〉 ∅)

= ({s2, s3} ∩ {s1, s3}) ∪ (∅ ∪ ∅)
= {s3} .
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We now apply OFX
to the set {s3}:

OFX
({s3}) = ([·a·] {s3} ∩ [·b·] {s3}) ∪ (〈·a·〉 {s3} ∪ 〈·b·〉 {s3})

= ({s2, s3} ∩ {s1, s3}) ∪ ({s1} ∪ ∅)
= {s1, s3} .

In this iteration the state s1 was added to the candidate solution. We apply
OFX

to the set {s1, s3}:

OFX
({s1, s3}) = ([·a·] {s1, s3} ∩ [·b·] {s1, s3}) ∪ (〈·a·〉 {s1, s3} ∪ 〈·b·〉 {s1, s3})

= ({s2, s3} ∩ {s1, s3}) ∪ ({s1} ∪ ∅)
= {s1, s3} .

We have now found that the set {s1, s3} is the minimum fixed-point of the
function OFX

. This follows our intuition that s2 is the only state that can
never deadlock since it can always take the transition s2

b−→ s2.

s1

s2 s3

a a

b

Figure 1.5: A process.

In Example 1.20 the maximum fixed-point is the set {s1, s2, s3}, which is
clearly not the solution we are looking for since the state s2 can never deadlock.
It turns out that minimum fixed-points are useful for expressing properties that
hold if there is a finite computation proving the property (also called liveness
properties), and maximum fixed-points are useful for expressing properties that
hold unless there is a finite computation disproving the property (called safety
properties).

1.2 Outline of the Report

The structure of the remainder of this report is as follows: In Chapter 2 we
introduce the notion of dependency graphs and related concepts, which is the
foundation of the verification engine in Caal. In Chapter 3 we present a general
equivalence relation between states and show reductions from such relations to
dependency graphs. In Chapter 4 we introduce the process algebra Timed CCS
and the logic Timed HML. We also show a number of timed equivalences and
preorders and extend our general equivalence relation with time. In Chapter 5
we provide selected implementation details, and in Chapter 6 we present Caal
in the form of an informal tutorial. Chapter 7 contains the conclusion and
possible directions for future work.
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1.3 Bibliographical Remarks

Chapter 1 The equivalences and preorders defined in Section 1.1.1 are
refinements of those found in [14] where they were originally adopted
from [1]. However, Definition 1.4 and Definition 1.9 are new. The exam-
ples in Section 1.1.1 are inspired by [14].
The syntax and semantics of CCS in Section 1.1.2.1 is from [1]. Sec-
tion 1.1.2.2 on unguarded recursion is reused from [14]. The structural
congruence rules for CCS are refinements of [14]. The introduction to
recursive HML in Section 1.1.3 is based on [1].

Chapter 2 The definitions and examples are refinements of those found
in [14], except Example 2.9 which is new.

Chapter 3 Definition 3.1 is adopted from [1].

Chapter 4 The syntax and semantics of Timed CCS are based on [1], but
the semantics are slightly modified. The equivalences and preorders de-
fined in Section 4.3 are similar to those found in Section 1.1.1, but uses
our own notion of untimed transitions. The examples in Section 4.3 are
new. The syntax and semantics of Timed HML are extensions of the
syntax and semantics of recursive HML, and the examples are new.

Chapter 6 The tutorial is an extended and modified version of the tutorial
from [14] written in collaboration with [15]. Our main contributions to
this chapter are Section 6.2, Section 6.4.3, Section 6.5.2, and Section 6.5.5.



2Verification Using Dependency
Graphs

In this chapter we introduce the notion of dependency graphs which was origi-
nally presented by Xinxin Liu and Scott A. Smolka [6]. Dependency graphs are
the basis for verification in Caal. We describe what assignments on depen-
dency graphs are, and how the complete lattice that exists between assignments
ensures the existence of both minimum and maximum fixed-points by applying
the Knaster-Tarski Theorem [10]. Finally, we introduce an on-the-fly algorithm
for computing fixed-points on dependency graphs.

2.1 Dependency Graphs

A dependency graph is a directed graph which is used to represent dependencies
between boolean variables. Dependency graphs are defined in Definition 2.1.

Definition 2.1 - Dependency Graph
A dependency graph is a pair (V,E) where V is a finite set of vertices and
E ⊆ V ×P(V ) is a finite set of hyperedges. A hyperedge is a pair (v, T ) where
v is the source and T ⊆ V is the target set.

We now give an example of a dependency graph.

Example 2.2
Let G = (V,E) be a dependency graph where V = {s1, s2, s3, s4} and E =
{(s4, ∅), (s3, {s4}), (s1, {s3, s4}), (s1, {s2}), (s2, {s2})}. The dependency graph
G can be seen in Figure 2.1.

s1

s3s2 s4

∅

Figure 2.1: A simple dependency graph.

25
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2.2 Assignments

To find fixed-points on dependency graphs we introduce the notion of assign-
ments.

Definition 2.3 - Assignment
An assignment A on a dependency graph G is defined as a function mapping
each vertex to either 1 or 0: A : V → {0, 1}.

We can now use the assignment function A to define the pre-fixed-point assign-
ment of a dependency graph.

Definition 2.4 - Pre-Fixed-Point Assignment
A pre-fixed-point assignment A of dependency graph G is an assignment where
for all vertices v ∈ V , if there is a hyperedge (v, T ) ∈ E such that for all targets
v′ ∈ T it is the case that A(v′) = 1, then A(v) = 1.

And the post-fixed-point assignment.

Definition 2.5 - Post-Fixed-Point Assignment
A post-fixed-point assignment A of dependency graph G is an assignment where
for any vertex v ∈ V , if it is the case that for all hyperedges (v, T ) ∈ E there
is a target v′ ∈ T such that A(v′) = 0, then A(v) = 0.

The partial order v between assignments is defined as A v A′ if for all
v ∈ V it is the case that A(v) ≤ A(v′). Then by Tarski’s fixed-point theorem
we know that there must exist a unique minimum pre-fixed-point assignment,
Amin, and a unique maximum post-fixed-point assignment, Amax [10].

s1

1

s3

1
s2

0
s4

1

∅

Figure 2.2: Minimum pre-fixed-point assignment.

Now we define F as a function mapping assignments to assignments.
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Definition 2.6 - Assignment Function
Let A be an assignment on a dependency graph G = (V,E), then F (A) is also
an assignment for G, where F (A)(v) = 1 if and only if there exists a hyperedge
(v, T ) ∈ E such that it is the case for all v′ ∈ T that A(v′) = 1.

Repeated applications of F starting with ⊥ (assignment mapping all vertices
to 0) approximates the minimum-fixed-point F (F (. . . F (⊥))). For convenience,
we let F 0(A) = A, and Fn+1(A) = F (Fn(A)). When Fn+1(⊥) = Fn(⊥), then
Fn(⊥) = Amin.

Example 2.7
We compute the minimum fixed-point assignment of the dependency graph
shown in Figure 2.2.

1. Initially, all vertices have the assignment 0. However, for the hyperedge
(s4, ∅) it is trivial that for all targets s′4 ∈ ∅, it is the case that Amin(s′4) =
1. Thus Amin(s4) = 1.

2. Since Amin(s4) = 1, and due to the hyperedge (s3, {s4}) ∈ E, we have
that Amin(s3) = 1.

3. Since Amin(s3) = 1 and Amin(s4) = 1, then due to the hyperedge
(s1, {s3, s4}) ∈ E, we have that Amin(s1) = 1.

We now introduce the notion of level on dependency graphs. The level
indicates in which iteration of the function F the assignment was improved.

Definition 2.8 - Dependency Graph Level
Let (V,E) be a dependency graph. The level of vertex v ∈ V is L(v) = n if
Fn(v) = 1 and Fn−1(v) = 0. By convention, if the assignment of the vertex
never changes, then L(v) =∞.
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Example 2.9
We show how the level is computed on the dependency graph shown in Fig-
ure 2.3. Table 2.1 shows the assignment and level of each vertex in each itera-
tion of F .

F i L(s1) L(s2) L(s3) L(s4) A(s1) A(s2) A(s3) A(s4)
1 0 0 0 1 0 0 0 1
2 0 0 2 1 0 0 1 1
3 3 0 2 1 1 0 1 1
4 3 0 2 1 1 0 1 1

Table 2.1: Assignments and levels.

A(u) = 1
L(u) = 3

s1

A(x) = 1
L(x) = 2

s3

A(w) = 0
L(w) =∞

s2

A(y) = 1
L(y) = 1

s4

∅

Figure 2.3: Simple dependency graph with level.

2.3 Fixed-Point Algorithm

We now present an on-the-fly algorithm by Xinxin Liu and Scott A.Smolka
for computing the minimum pre-fixed-point assignment for a given vertex on
a dependency graph [6].

Algorithm 2.1 takes a dependency graph G = (V,E) and a vertex v ∈ V as
input, and computes the minimum pre-fixed-point assignment Amin(v).

The algorithm maintains a set W of hyperedges waiting to be processed,
which initially contains the hyperedges that have v0 as the source, and will
be expanded as needed. For each v ∈ V the hyperedges which were processed
under the assumption that A(v) = 0 is recorded inD(v). The symbol ⊥ denotes
that a vertex has not yet been visited.
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Algorithm 2.1 Liu-Smolka local algorithm.
Input: A dependency graph G = (V,E) and a vertex v0 ∈ V .
Output: The minimum pre-fixed-point assignment Amin(v0).
1: for all v ∈ V do
2: A(v)← ⊥
3: A(v0)← 0
4: D(v0)← ∅
5: W ← succ(v0)
6: while W 6= ∅ do
7: e← (v, T ) ∈W
8: W ←W \ {e}
9: if ∀v′ ∈ T. A(v′) = 1 then

10: A(v)← 1
11: W ←W ∪D(v)
12: else if ∃v′ ∈ T. A(v′) = 0 then
13: D(v′)← D(v′) ∪ {e}
14: else
15: A(v′)← 0
16: D(v′)← {e}
17: W ←W ∪ succ(v′)
18: return A(v0)

In each iteration of the while-loop a hyperedge e = (v, T ) is selected and re-
moved from W . The algorithm terminates when there are no more hyperedges
waiting to be processed (i.e. W = ∅). There are three cases:

• If A(v′) = 1 for every vertex v′ in the target set T of e, then A(v) = 1.
Each hyperedge e′ ∈ D(v) must be re-processed since the assumption
that A(v) = 0 no longer holds. To accomplish this, D(v) is added to W .

• There exists a v′ ∈ T such that A(v′) = 0. To allow e to be re-processed
if A(v′) becomes 1 at a later point, e is added to D(v′).

• If A(v′) = ⊥ for every vertex v′ in the target set T of e, then e is added
to D(v′) and every hyperedge which has v′ as the source is added to W .

Table 2.2 shows the internal state of the algorithm before the i’th iteration
of the while-loop when executed on the dependency graph shown in Figure 2.2
and the vertex s2.

i W A(s2) A(s3) D(s2) D(s3)
1 {(s2, {s3})} 0 ⊥ ∅ ∅
2 {(s3, ∅)} 0 0 ∅ (s2, {s3})
3 {(s2, {s3})} 0 1 ∅ (s2, {s3})
4 ∅ 1 1 ∅ (s2, {s3})

Table 2.2: Execution of Algorithm 2.1 on Figure 2.2.





3Generalized Equivalences and
Preorders

In this chapter we introduce the notion of a generalized parametric semantic
relation inspired by [2] which can be used to define a wide range of equiva-
lences and preorders. We provide examples of concrete instantiations of the
parameters for the equivalences and preorders currently supported by Caal,
which are:

• strong/weak simulation,

• strong/weak simulation equivalence,

• strong/weak bisimulation,

• strong/weak trace inclusion, and

• strong/weak trace equivalence.

We then reduce the problem of determining for a pair of states if there
exists a generalized parametric semantic relation that relates them, to that of
computing the minimum pre-fixed-point assignment on a dependency graph.
The minimum pre-fixed-point assignment is computed using the on-the-fly al-
gorithm shown in Algorithm 2.1.

3.1 Game Characterizations

To prove that s ∼ t, it suffices to find a single binary relation containing the
pair (s, t) and proving that it is a strong bisimulation. However, in order to
prove the negative case (e.g. s 6∼ t) one would have to prove that every distinct
binary relation on Proc containing the pair (s, t) is not a strong bisimulation.
This approach quickly becomes infeasible as the number of distinct binary
relations on an n-element set is 2n2 . To overcome this problem, we provide
an alternative definition of strong bisimilarity in terms of a set of rules for a
game, which we call a game characterization. This not only has the advantage
of allowing us to prove the negative case in an easier way, but viewing an
equivalence checking problem as a game with a winner and a loser can also
provide a better intuitive understanding of the problem, which is beneficial in
an educational context.

We now define the rules for the game characterization of strong bisimilarity.

Definition 3.1 - Strong Bisimulation Game
Let (Proc, Act,→) be an LTS and let s, t ∈ Proc be states. The game consists
of an “attacker” whose goal is to show that s 6∼ t, and a “defender” whose
goal is to show that s ∼ t. The game is played over a number of rounds,

31
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where each round starts in a pair of states from Proc×Proc called the current
configuration. Initially, the pair (s, t) will be the current configuration.

Each round is played according to the following rules where (s, t) is the
current configuration:

1. The attacker must perform a transition s α−→ s′ or t α−→ t′ where s′, t′ ∈
Proc and α ∈ Act. If both s 6→ and t 6→ then the defender wins.

2. The defender must now respond with a transition.

• If the attacker played s
α−→ s′ then the defender must perform a

transition t α−→ t′ for some t′ ∈ Proc. If t 6 α−→ then the attacker wins.
• If the attacker played t

α−→ t′ then the defender must perform a
transition s

α−→ s′ for some s′ ∈ Proc. If s 6 α−→ then the attacker
wins.

3. The game continues for another round with the pair (s′, t′) as the cur-
rent configuration. If the pair (s′, t′) has previously been the current
configuration the defender wins.

We say that s ∼ t if and only if the defender has a universal winning strategy.
That is, a strategy where the defender always wins, regardless of how the
attacker plays. Conversely, we say that s 6∼ t if and only if the attacker has a
universal winning strategy.

It should be noted that the defender wins in case of an infinite play. The
reasoning behind this is that the attacker has not been able to demonstrate a
difference in the two systems.

The above definition can be modified to obtain game characterizations of
other equivalences and preorders. For example, in a weak bisimulation game the
defender is allowed to respond with weak transitions, and in a strong simulation
game the attacker is only allowed to play on one side, while the defender plays
on the other side. In a trace equivalence game there is only one round where the
attacker starts by playing a sequence of actions on one side, which the defender
must then match with the same sequence of actions on the other side.

3.2 Generalized Parametric Semantic Relation

In Section 3.1 we saw that the game characterizations of different equivalences
and preorders only differ slightly. We now take advantage of this observation
and define a parameterized relation, where the parameters correspond to the
rules of the game characterization of the equivalence or preorder that we wish
to capture. We will refer to this relation as a generalized parametric semantic
relation.

The relation has three variable parameters: d, k, and m, where d denotes
which side the attacker is allowed to start playing from (left, right, or both), k
is the maximum number of rounds in the game, and m is the number of times
the attacker is allowed to switch sides. We also have a special fixed parameter
E, which is another relation that every pair must also be included in.
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Definition 3.2 - Generalized Parametric Semantic Relation
Let (Proc, Act,→) be an LTS. We fix a set of parameters for a parameterized
relation:

• Type ∈ {strong,weak},
• Moves ∈ {long, short},
• E ⊆ Proc× Proc.

We have a set of variables:

• d ∈ {L,R,LR},
• k ∈ N∞0 ,
• m ∈ N∞0 .

We define w
↪−→ as

w
↪−→ def=



w−→ where |w| = 1 if Type = strong and Moves = short,
w=⇒ where |w| = 1 if Type = weak and Moves = short,
w−→ where |w| ≥ 1 if Type = strong and Moves = long,
w=⇒ where |w| ≥ 1 if Type = weak and Moves = long.

A collection of binary relations over the set of states in an LTS is given by
the function

R : {L,R,LR} × N∞0 × N∞0 → P(Proc× Proc)

and is called a generalized parametric semantic relation with respect to Type,
Moves, and E if for all d, k,m we have that

1. R(d, k,m) ⊆ E

and for all (s, t) ∈ R(d, k,m) where k > 0 we have that

2. if d = L then
a) if s w

↪−→ s′ then there is a transition t
w
↪−→ t′ such that (s′, t′) ∈

R(L, k − 1,m), and

b) if t w
↪−→ t′ and m > 0 then there is a transition s

w
↪−→ s′ such that

(s′, t′) ∈ R(R, k − 1,m− 1), or
3. if d = R then

a) if t w
↪−→ t′ then there is a transition s

w
↪−→ s′ such that (s′, t′) ∈

R(R, k − 1,m), and

b) if s w
↪−→ s′ and m > 0 then there is a transition t

w
↪−→ t′ such that

(s′, t′) ∈ R(L, k − 1,m− 1), or
4. if d = LR then

a) if s w
↪−→ s′ then there is a transition t

w
↪−→ t′ such that (s′, t′) ∈

R(L, k − 1,m), and

b) if t w
↪−→ t′ then there is a transition s

w
↪−→ s′ such that (s′, t′) ∈

R(R, k − 1,m).
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Two states s and t are semantically related written (s, t) ∈ ∆(Type, Moves, E,
d, k,m) if and only if there is a generalized parametric semantic relation with
respect to Type, Moves, and E such that (s, t) ∈ R(d, k,m).

We now show a number of concrete instantiations of the generalized para-
metric semantic relation for different strong and weak preorders and equiva-
lences from the linear time - branching time spectrum by Rob van Glabbeek [13],
as shown in Figure 3.1.

Bisimulation

2-Nested Simulation

Ready Simulation

Possible Futures

Ready Trace

Readiness Failure Trace

Failure

Completed Trace

Trace

Simulation

Figure 3.1: The linear time - branching time spectrum.

Simulation
∆(Type, short, Proc× Proc, L,∞, 0)

Simulation Equivalence
∆(Type, short, Proc× Proc,LR,∞, 0)
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Bisimulation
∆(Type, short, Proc× Proc,LR,∞,∞)

Trace Inclusion
∆(Type, long, Proc× Proc, L, 1, 0)

Trace Equivalence
∆(Type, long, Proc× Proc,LR, 1, 0)

Ready-Trace Equivalence
∆(Type, long, {(s, t) | s α−→ iff t α−→ for all α ∈ Act},LR, 1, 0)

2-Nested Simulation
∆(Type, short, Proc× Proc, L, 2, 0)

3.3 Reductions to Dependency Graphs

In this section we show reductions from the problem of determining if a pair
of states are semantically related to that of computing the minimum pre-fixed-
point assignment on a dependency graph. The reductions for short and long
moves are shown in Figures 3.2 and 3.3, respectively.

Definition 3.3 - Successor Generator
We define the successor generator succ(s, α) = {s′ | s α

↪−→ s′} for a process s
and action α.
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〈(s, t),LR, k,m〉

〈(s, t), L, k,m〉 〈(s, t), R, k,m〉

(a) Initial state, both sides.

〈(s, t), L, k,m〉

· · ·〈(s′, t1), L, k − 1,m〉 〈(s′, tn), L, k − 1,m〉

if s α
↪−→ s′ let {t1, . . . , tn} = {t′ ∈ succ(t, α) | (s′, t′) ∈ E}

k > 0

(b) Move on left side.

〈(s, t), R, k,m〉

· · ·〈(s1, t
′), R, k − 1,m〉 〈(sn, t′), R, k − 1,m〉

if t α
↪−→ t′ let {s1, . . . , sn} = {s′ ∈ succ(s, α) | (s′, t′) ∈ E}

k > 0

(c) Move on right side.

〈(s, t), L, k,m〉

〈(s, t), R, k,m− 1〉

m > 0

(d) Switch side from left to right.

〈(s, t), R, k,m〉

〈(s, t), L, k,m− 1〉

m > 0

(e) Switch side from right to left.

Figure 3.2: Dependency graph construction for short moves.
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〈(s, t),LR, k,m〉

〈(s, t), L, k,m〉 〈(s, t), R, k,m〉

(a) Initial state, both sides.

〈(s, t), L, k,m〉

〈(s, {t}), L, k,m〉

(b) Initial state, left.

〈(s, t), R, k,m〉

〈({s}, t), R, k,m〉

(c) Initial state, right.

〈(s, {t1, . . . , tn}), L, k,m〉

〈(
s′, {t′ ∈

n⋃
i=1

succ(ti, α) | (s′, t′) ∈ E}
)
, L, k,m

〉

k > 0

for each α :
for each s′ ∈ succ(s, α) :

(d) Move on left side.

〈({s1, . . . , sn}, t), R, k,m〉

〈(
{s′ ∈

n⋃
i=1

succ(si, α) | (s′, t′) ∈ E}, t′
)
, R, k,m

〉

k > 0

for each α :
for each t′ ∈ succ(t, α) :

(e) Move on right side.

〈(s, {t1, . . . , tn}), L, k,m〉

· · ·〈(s, t1), L, k − 1,m〉 〈(s, tn), L, k − 1,m〉

k > 0

(f) End of round, left side.
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〈({s1, . . . , sn}, t), R, k,m〉

· · ·〈(s1, t), R, k − 1,m〉 〈(sn, t), R, k − 1,m〉

k > 0

(g) End of round, right side.

〈(s, t), L, k,m)〉

〈(s, t), R, k,m− 1)〉

m > 0

(h) Switch side from left to right.

〈(s, t), R, k,m)〉

〈(s, t), L, k,m− 1)〉

m > 0

(i) Switch side from right to left.

〈(s, ∅), L, k,m〉

∅

(j) Empty set.

〈(∅, t), R, k,m〉

∅

(k) Empty set.

Figure 3.3: Dependency graph construction for long moves.

Theorem 3.4
We have that Amin(〈(s, t), d, k,m〉) = 0 on the dependency graphs from Fig-
ure 3.2 if and only if (s, t) ∈ ∆(Type, short, E, d, k,m).

Proof. We prove both directions of the above statement.

“⇒”: We construct a family of semantic relations

R(d, k,m) = {(s, t) | Amin(〈(s, t), d, k,m〉) = 0}.

We want to prove that the family of relations R(d, k,m) is a generalized
parametric semantic relation. The conditions in Definition 3.2 must be
satisfied. Case 1 must always be satisfied and either Case 2, Case 3, or
Case 4 must also be satisfied.
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Case 1
From the construction rules in Figure 3.2, we can see that for any
new pair of states (s′, t′) it holds that (s′, t′) ∈ E.

Case 2
a Let d = L, k > 0, and s

α
↪−→ s′. We have that Amin(〈(s, t), L,

k,m〉) = 0. From Figure 3.2b this implies, that t α
↪−→ t′ such that

Amin(〈(s′, t′), L, k − 1,m〉) = 0. Hence (s′, t′) ∈ R(d, k − 1,m).

b Let d = L, k > 0,m > 0, and t
α
↪−→ t′. A transition t

α
↪−→

t′ is considered a move on the right side, hence a side switch
must be made. We have that Amin(〈(s, t), L, k,m〉) = 0. From
Figure 3.2d this implies that Amin(〈(s, t), R, k,m − 1〉) = 0.
Next, from Figure 3.2c this implies that s α

↪−→ s′ for some s′
such that Amin(〈(s′, t′), R, k − 1,m − 1〉) = 0. Hence (s′, t′) ∈
R(d, k − 1,m− 1).

Case 3
a Symmetrical to Case 2a.

b Symmetrical to Case 2b.
Case 4

a Let d = LR, k > 0, and s α
↪−→ s′. We have that Amin(〈(s, t),LR,

k,m〉) = 0. From Figure 3.2a this implies that Amin(〈(s, t), L,
k,m〉) = 0 and Amin(〈(s, t), R, k,m〉) = 0. Since Amin(〈(s, t), L,
k,m〉) = 0, we have from Figure 3.2b that t α

↪−→ t′ such that
Amin(〈(s′, t′), L, k − 1,m〉) = 0. Hence (s′, t′) ∈ R(d, k − 1,m).

b Symmetrical to Case 4a.

“⇐”: From Definition 3.2 we have that if (s, t) ∈ ∆(Type, short, E, d, k,m)
then there exists a generalized parametric semantic relation R(d, k,m)
such that (s, t) ∈ R(d, k,m). We define an assignment

A(〈(s, t), d, k,m〉) =
{

0 if (s, t) ∈ R(d, k,m)
1 otherwise.

We prove that A(〈(s, t), d, k,m〉) is a pre-fixed-point assignment by show-
ing that none of the rules in Figure 3.2 can improve the assignment. For
each rule we show that every hyperedge from the root has at least one
vertex in its target set where A(〈(s, t), d, k,m〉) = 0.

Figure 3.2a
Assume that A(〈(s, t),LR, k,m〉) = 0 which implies that (s, t) ∈
R(LR, k,m). We want to show that (s, t) ∈ R(L, k,m) and (s, t) ∈
R(R, k,m), which implies that A(〈(s, t), L, k,m〉) = 0 and A(〈(s, t),
R, k,m〉) = 0. To show this, case 2 and case 3 from Definition 3.2
must be satisfied.
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Case 2a
Let s w

↪−→ s′. We want to find a transition t
w
↪−→ t′ such that

(s′, t′) ∈ R(L, k − 1,m). Because (s, t) ∈ R(LR, k,m), then
due to case 4a there is a transition t

w
↪−→ t′ such that (s′, t′) ∈

R(L, k − 1,m).
Case 2b

Let t w
↪−→ t′. We want to find a transition s

w
↪−→ s′ such that

(s′, t′) ∈ R(R, k − 1,m − 1). Because (s, t) ∈ R(LR, k,m),
then due to case 4b there is a transition s

w
↪−→ s′ such that

(s′, t′) ∈ R(R, k − 1,m). This trivially implies that (s′, t′) ∈
R(R, k − 1,m− 1).

Case 3a
Symmetrical to Case 2a.

Case 3b
Symmetrical to Case 2b.

Since both cases are satisfied we have that (s, t) ∈ R(L, k,m) and
(s, t) ∈ R(R, k,m), which implies that A(〈(s, t), L, k,m〉) = 0 and
A(〈(s, t), R, k,m〉) = 0. Hence the assignmentA(〈(s, t),LR, k,m〉) =
0 cannot be improved.

Figure 3.2b
Assume that A(〈(s, t), L, k,m〉) = 0 which implies that (s, t) ∈
R(L, k,m). From Definition 3.2 we have that if d = L then when-
ever s w

↪−→ s′ there must exist a state t′ such that t w
↪−→ t′ and (s′, t′) ∈

R(L, k−1,m) which implies that A(〈(s′, t′), L, k−1,m〉) = 0. Hence
the assignment A(〈(s, t), L, k,m〉) = 0 cannot be improved.

Figure 3.2c
Symmetrical to Figure 3.2b.

Figure 3.2d
Assume that A(〈(s, t), L, k,m〉) = 0 which implies that (s, t) ∈
R(L, k,m). We want to show that (s, t) ∈ R(R, k,m − 1) which
implies that A(〈(s, t), R, k,m − 1〉) = 0. To show this, case 3a and
case 3b from Definition 3.2 must be satisfied.
Case 3a

Let t w
↪−→ t′, we want to find a transition s

w
↪−→ s′ such that

(s′, t′) ∈ R(R, k − 1,m − 1). Because (s, t) ∈ R(L, k,m), then
due to case 2b there is a transition s w

↪−→ s′ such that (s′, t′) ∈
R(R, k − 1,m− 1).

Case 3b
Let s w

↪−→ s′, we want to find a transition t
w
↪−→ t′ such that

(s′, t′) ∈ R(L, k − 1,m − 2). Because (s, t) ∈ R(L, k,m), then
due to case 2a there is a transition t

w
↪−→ t′ such that (s, t) ∈

R(L, k − 1,m). This trivially implies that (s, t) ∈ R(L, k −
1,m− 2).

Since both cases are satisfied we have that (s, t) ∈ R(R, k,m − 1)
which implies that A(〈(s, t), R, k,m−1〉) = 0. Hence the assignment
A(〈(s, t), L, k,m〉) = 0 cannot be improved.
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Figure 3.2e
Symmetrical to Figure 3.2d.

Theorem 3.5
We have that Amin(〈(s, t), d, k,m〉) = 0 on the dependency graphs from Fig-
ure 3.3 if and only if (s, t) ∈ ∆(Type, long, E, d, k,m).

Proof. We prove both directions of the above statement.

“⇒”: We construct a family of semantic relations

R(d, k,m) = {(s, t) | Amin(〈(s, t), d, k,m〉) = 0}.

We want to prove that the family of relations R(d, k,m) is a generalized
parametric semantic relation. The conditions in Definition 3.2 must be
satisfied. Case 1 must always be satisfied and either Case 2, Case 3, or
Case 4 must also be satisfied.

Case 1
From the construction rules in Figure 3.3, we can see that for any
new pair of states (s′, t′) it holds that (s′, t′) ∈ E.

Case 2
a Let d = L, k > 0, and s w

↪−→ s′. We have that Amin(〈(s, t), L, k,
m〉) = 0. We start by applying the rule shown in Figure 3.3b.
SinceAmin(〈(s, t), L, k,m〉) = 0 we now have thatAmin(〈(s, {t}),
L, k,m〉) = 0. Next, we make |w| number of moves on the
left side using the rule shown in Figure 3.2b such that the
chosen successors form the sequence w ending up in the node
〈(s′, {t1, . . . , tn}), L, k,m〉. Because we must have Amin(〈(s′,
{t1, . . . , tn}), L, k,m〉) = 0 it is implied that there is at least
one transition t w

↪−→ ti such that Amin(〈(s′, ti), L, k− 1,m〉) = 0.
Hence (s′, ti) ∈ R(L, k − 1,m).

b Let d = L, k > 0,m > 0, and t
w
↪−→ t′. A transition t

w
↪−→ t′ is

considered a move on the right side, hence a side switch must
be made. We have that Amin(〈(s, t), L, k,m〉) = 0, and from the
rule shown in Figure 3.3h it is implied thatAmin(〈(s, t), R, k,m−
1〉) = 0. The rest of the proof is symmetrical to that of Case
2a.

Case 3
a Symmetrical to Case 2a.
b Symmetrical to Case 2b.

Case 4
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a Let d = LR, k > 0, and s w
↪−→ s′. We have that Amin(〈(s, t),LR,

k,m〉) = 0. From the rule shown in Figure 3.3a it is implied
that Amin(〈(s, t), L, k,m〉) = 0 and Amin(〈(s, t), R, k,m〉) = 0.
The rest of the proof is identical to that of Case 2a.

b Symmetrical to Case 4a.

“⇐”: From Definition 3.2 we have that if (s, t) ∈ ∆(Type, long, E, d, k,m) then
there exists a generalized parametric semantic relation R(d, k,m) such
that (s, t) ∈ R(d, k,m). We define an assignment

A(〈(s, t), d, k, m〉) =
{

0 if (s, t) ∈ R(d, k, m)
1 otherwise

A(〈({s1, . . . , sn}, t), d, k, m〉) =
{

0 if (si, t) ∈ R(d, k, m) for some 1 ≤ i ≤ n

1 otherwise

A(〈(s, {t1, . . . , tn}), d, k, m〉) =
{

0 if (s, ti) ∈ R(d, k, m) for some 1 ≤ i ≤ n

1 otherwise.

We prove that A(〈(s, t), d, k,m〉) is a pre-fixed-point assignment by show-
ing that none of the rules in Figure 3.3 can improve the assignment. For
each rule we show that every hyperedge from the root has at least one
vertex in its target set where A(〈(s, t), d, k,m〉) = 0.

Figure 3.3a
Identical to the proof of Figure 3.2a in Theorem 3.4.

Figures 3.3b, 3.3d, and 3.3f
We combine several rules in order to perform a single long move
on the left side. We start with a single application of Figure 3.3b,
followed by a sequence of applications of Figure 3.3d, where each
such sequence can only end with a single application of either Figure
3.3f or Figure 3.3j.
Assume that A(〈(s, t), L, k,m〉) = 0 which implies that (s, t) ∈
R(L, k,m). From Definition 3.2 we have that because (s, t) ∈ R(L,
k,m) then whenever s w

↪−→ s′ there must exist a state t′ such that
t
w
↪−→ t′ and (s′, t′) ∈ R(L, k− 1,m). This means that for each appli-

cation of Figure 3.3d the set {t1, . . . , tn} will always be non-empty,
and thus every sequence of applications of Figure 3.3d will even-
tually be followed by a single application of Figure 3.3f (i.e Figure
3.3j will never be applied). This implies that the set {t1, . . . , tn} in
Figure 3.3f must contain a state ti such that (s′, ti) ∈ R(L, k−1,m)
and thereby A(〈(s′, ti), L, k − 1,m〉) = 0. Hence the assignment
A(〈(s, t), L, k,m〉) = 0 cannot be improved.

Figures 3.3c, 3.3e, and 3.3g
Symmetrical to Figures 3.3b, 3.3d, and 3.3f.

Figure 3.3h
Identical to the proof of Figure 3.2d in Theorem 3.4.
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Figure 3.3i
Symmetrical to Figure 3.3h.

Figure 3.3j
Assume that A(〈(s, ∅), L, k,m〉) = 1 which implies that (s, t) /∈
R(L, k,m). Clearly the assignment A(〈(s, ∅), L, k,m〉) = 1 will
never change since there is only a single hyperedge going to the
empty set.

Figure 3.3k
Symmetrical to Figure 3.3j.

As a result of Theorem 3.4 and Theorem 3.5, we are now able to state the
main result.

Corollary 3.6
We have that Amin(〈(s, t), d, k,m〉) = 0 if and only if (s, t) ∈ ∆(Type, Move, E,
d, k,m).

We now demonstrate how to use the rules from Figure 3.2 and Figure 3.3
on the LTS given in Figure 3.4. We give examples of strong bisimulation and
strong trace equivalence between the two states s and t. When the dependency
graph has been created it can be determined if the two states are semantically
related by computing the minimum pre-fixed-point assignment.

s

s1

s2 s3

a

b c

t

t1 t2

t3 t4

a a

b c

Figure 3.4: Two states s and t.
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〈(s, t),LR,∞,∞〉
1

〈(s, t), L,∞,∞〉
1

〈(s, t), R,∞,∞〉

...

〈(s1, t1), L,∞,∞〉
1

〈(s1, t2), L,∞,∞〉
1

〈(s1, t1), R,∞,∞〉

...

〈(s2, t3), L,∞,∞〉
0

〈(s2, t3), R,∞,∞〉
0

〈(s3, t4), L,∞,∞〉
0

∅

〈(s1, t2), R,∞,∞〉

...

〈(s3, t4), R,∞,∞〉
0

a

b c cb

Figure 3.5: Dependency graph for bisimulation.

Example 3.7
We construct a partial dependency graph in Figure 3.5 from the procsseses
s and t in Figure 3.4, using the rules from Figure 3.2 with the generalized
parametric semantic relation for strong bisimulation, ∆(strong, short, Proc ×
Proc,LR,∞,∞). We can establish that the two processes are not strongly
bisimilar since the root node has the minimum pre-fixed-point assignment 1.
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〈(s, t),LR, 1, 0〉
0

〈(s, t), L, 1, 0〉
0

〈(s, t), R, 1, 0〉
0

〈(s, {t}), L, 1, 0〉
0

〈(s, t), L, 0, 0〉
0

〈(s1, {t1, t2}), L, 1, 0〉
0

〈(s1, t1), L, 0, 0〉
0

〈(s1, t2), L, 0, 0〉
0

〈(s2, {t3}), L, 1, 0〉
0

〈(s3, {t4}), L, 1, 0〉
0

〈(s2, t3), L, 0, 0〉
0

〈(s3, t4), L, 0, 0〉
0

...

Figure 3.6: Dependency graph for trace equivalence.

Example 3.8
We construct a partial dependency graph in Figure 3.6 from the processes s and
t in Figure 3.4, using the rules from Figure 3.3 with the generalized parametric
semantic relation for strong trace equivalence, ∆(strong, long, Proc×Proc,LR,
1, 0). We can establish that the two processes are strong trace equivalent since
the root node has the minimum pre-fixed-point assignment 0.





4Timed CCS

In this chapter we introduce the timed process algebra Timed CCS (TCCS)
introduced by Wang Yi [16]. TCCS is an extension of CCS with only one new
syntactic element, the delay prefixing operator.

There are two different ways of viewing the flow of time. There is continuous
time with delays in the set R≤0 of non-negative real numbers as the time
domain, and there is discrete time with delays in the set N of natural numbers
as the time domain.

Time values in the discrete time domain are distinct points in time. A
discrete time value jumps from one value to another without distinguishing
what happened in between the values. Continuous time is a more natural way
of viewing the flow of time; between any two time values, there are an infinite
number of other time values.

We will restrict ourselves to the discrete time domain since discrete time is
easier to implement and visualize. Moreover, we will define our semantics to
use delays of 1 time unit only.

4.1 The Language TCCS

We still have all the syntactical elements as CCS, but we add the delay prefix
operator ε(d) to the syntax. With delays we can model processes like

ε(5).a.0 ,

which means that after 5 time units we can perform a, and then become 0.
Recall the example in Section 1.1.2 where we had a process Driver which

we modelled as
Driver def= drive.Driver .

At some unfortunate point in time the driver might crash his car, which we
now model as

Driver def= drive.Driver + drive.Crash .

Before we model Crash, let us define an airbag to protect the driver from the
crash:

Airbag def= crash.ε(1).inflate.Airbag ,

which means that after a crash, the airbag can inflate after 1 unit of time
has passed, but nothing is forcing it do so. Let us now model the remaining
processes, Crash and Impl:

Crash def= crash.(inflate.Driver + ε(2).τ.0) ,

Impl def= (Driver | Airbag) \ {crash, inflate} .

The Driver and the Airbag processes are now running in parallel, and since the
channels crash and inflate are restricted, they are forced to communicate. A
TCCS process cannot delay when a τ -action is available, introducing a sense

47
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of urgency. This means that 1 time unit after the crash has happened, the two
processes are forced to communicate on the inflate channel, thus producing a
τ -action which prevents further delaying. This prevention of delay makes it
impossible for the Crash prosses to reach the 0 process, and hereby saving the
driver.

It is of course also possible to make a bad airbag which will not inflate in
time:

BadAirbag def= crash.ε(3).τ.inflate.Airbag .

4.2 Syntax and Semantics

We model TCCS processes using Timed LTSs (TLTSs). A TLTS consists of
a set of states (or processes), a set of labels, and a transition relation. If a
process q can do a delay of 1 and become q′ it is written as q 1−→ q′.

Definition 4.1 - Timed Labelled Transition System
A TLTS is a triple (Proc, Lab,→) where Proc is a set of states, Lab is a set
of actions and delays Act ∪ {1}, and →⊆ Proc× Lab× Proc is the transition
relation.

We extend the syntax of CCS with the delay-prefixing operator ε(d) and
give the formal semantics of this operator. Our semantics uses discrete delays
of 1 time unit only, however we allow delays of arbitrary length in the syntax.

Definition 4.2 - TCCS Syntax
The syntax of TCCS is a direct extension of Definition 1.12. The syntax is
extended with a single operator:

ε(d).P

where d ∈ N0 is a time delay.

We extend the equivalence rules from Table 1.2 with the rules

ε(0).P ≡ P ,
ε(d).ε(d′).P ≡ ε(d+ d′).P .

We also extend the congruence rules from Table 1.3 with the rule

P ≡ Q
ε(d).P ≡ ε(d).Q

where P and Q are processes.
We now give the formal semantics of TCCS with only 1-delays. The SOS

rules for CCS still apply.
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Definition 4.3 - TCCS Semantics
The semantics of TCCS is a direct extension of Definition 1.13. The semantics
is extended with the following SOS rules:

DEL1
ε(d).P 1−→ ε(d− 1).P

if d ≥ 1 DELSUM
Pi

1−→ P ′i for each i ∈ I(∑
i∈I
Pi

)
1−→
(∑
i∈I
P ′i

)

DEL2
P

1−→ P ′

K
1−→ P ′

K
def= P DELREL

P
1−→ P ′

P [f ] 1−→ P ′[f ]

DEL3
α.P

1−→ α.P
for α 6= τ DELREC

P
1−→ P ′

P \ L 1−→ P ′ \ L

DELCOM
Pi

1−→ P ′i for each i ∈ I(
|
i∈I
Pi

)
1−→

(
|
i∈I
P ′i

) if
(
|
i∈I
Pi

)
τ−�−→

We now show some examples of the SOS rules in use. Consider the process

P ≡ a.0 .

This process can perform the transitions P a−→ 0 by the ACT rule and P 1−→ a.0
by the DEL3 rule. Now consider the process

Q ≡ a.0 + ε(2).b.0

which can perform the transitions Q a−→ 0 by the SUM and ACT rules and
Q

1−→ a.0 + ε(1).b.0 by the DELSUM and DEL1 rules. The process

R ≡ τ.0 + ε(2).b.0

can only perform the transition R
τ−→ 0 since the DEL3 rule prohibits delays

when a τ -transition is available, so we are forced to commit to the left-hand
side. The same applies for parallel composition where a composition cannot
delay if it can perform a τ -transition. Consider the process

S ≡ ε(2).b.0 | a.0 | a.0

which cannot delay since it is possible for the a and a to handshake and thereby
perform a τ -transition by the COM2 rule.

4.3 Equivalences and Preorders

This section describes notions of behavioral equivalences and preorders between
processes in terms of their TLTSs.
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Sometimes we want to abstract away from time. If we have the processes
ε(2).a.0 and a.0 where we might not care about the time, we would expect
these two processes to have the same behavior. In Definition 4.4 we define the
untimed transition which abstracts away from time.

Definition 4.4 - Untimed Transition
Let s and t be two states in a TLTS. For each label ι ∈ Lab, we write s ι−→u t
if and only if either

• ι 6= 1 and there are processes s′ and t′ such that

s
(

1−→
)∗
s′

ι−→ t′
(

1−→
)∗
t

• or ι = 1 and s
(

1−→
)∗
t.

For CCS we have a weak transition. The weak transition from Definition 1.2
also applies to TCCS except that we use a TLTS instead of an LTS. This allows
us to perform a 1=⇒ transition which abstracts away from τ .

It can also be useful to abstract away from both τ and time. Naturally, we
do this with a weak untimed transition defined in Definition 4.5.

Definition 4.5 - Untimed Weak Transition
Let s and t be two states in a TLTS. For each label ι ∈ Lab, we write s ι=⇒u t
if and only if either

• ι /∈ {τ, 1} and there are processes s′ and t′ such that

s
(
τ−→ ∪ 1−→

)∗
s′

ι−→ t′
(
τ−→ ∪ 1−→

)∗
t

• or ι ∈ {τ, 1} and s
(
τ−→ ∪ 1−→

)∗
t.

We can now continue to define the different timed and untimed versions of
the equivalences and preorders from Section 1.1.1.

In what follows, we use ↪−→ to denote either the strong timed transition rela-
tion →, the strong untimed transition relation −→u, the weak timed transition
relation ⇒, or the weak untimed transition relation =⇒u.

Definition 4.6 - Simulation
A binary relation R over the set of states of a TLTS is a simulation if and only
if whenever (s1, s2) ∈ R, and ι ∈ Lab:

If s1
ι−→ s′1 then there is a transition s2

ι
↪−→ s′2 such that (s′1, s′2) ∈ R.
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A state s is said to simulate a state t if and only if there is a simulation that
relates them. From now on the relation @∼t will be referred to as strong timed
simulation when ↪−→=−→, @∼u will be referred to as strong untimed simulation
when ↪−→=−→u, @≈t will be referred to as weak timed simulation when ↪−→= =⇒,
and @

≈u will be referred to as weak untimed simulation when ↪−→= =⇒u.

Having defined simulation we can now use this to define simulation equiva-
lence in Definition 4.7 which is the same as having simulation preorder in both
directions.

Definition 4.7 - Simulation Equivalence
Two states s and t are strong timed simulation equivalent if and only if s @∼t t
and t @∼t s. s and t are strong untimed simulation equivalent if and only if
s @∼u t and t @∼u s. s and t are weak timed simulation equivalent if and only if
s @≈t t and t @≈t s. s and t are weak untimed simulation equivalent if and only
if s @≈u t and t @≈u s .

From now on the relation 't will be referred to as strong timed simulation
equivalence, 'u will be referred to as strong untimed simulation equivalence,
ut will be referred to as weak timed simulation equivalence, and uu will be
referred to as weak untimed simulation equivalence.

Consider untimed strong bisimulation in Definition 4.8 as it appears in the
book Reactive Systems [1]. This definition for untimed strong bisimulation
does not abstract away from time in the natural way that one might expect,
because delays must be matched by delays and actions must be matched by
actions.

Definition 4.8 - Untimed Strong Bisimulation 1
A binary relation R over the set of states of a TLTS is a strong untimed
bisimulation if and only if whenever (s1, s2) ∈ R, and α is an action and d is a
delay:

if s1
α−→ s′1, then there is a transition s2

α−→ s′2 such that (s′1, s′2) ∈ R,

if s1
1−→ s′1, then there is a transition s2

(
1−→
)∗
s′2 such that (s′1, s′2) ∈ R,

if s2
α−→ s′2, then there is a transition s1

α−→ s′1 such that (s′1, s′2) ∈ R,

if s2
1−→ s′2, then there is a transition s1

(
1−→
)∗
s′1 such that (s′1, s′2) ∈ R.

Two states s and t are strongly untimed bisimilar if and only if there is a
strong untimed bisimulation the relates them.

Instead, we define the strong/weak timed/untimed bisimulation in Defini-
tion 4.9 where the untimed bisimulations uses the untimed transitions from
Definition 4.4 and Definition 4.5.
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Definition 4.9 - Bisimulation 2
A binary relation R over the set of states of a TLTS is a bisimulation if and
only if whenever (s1, s2) ∈ R, and ι ∈ Lab:

if s1
ι−→ s′1, then there is a transition s2

ι
↪−→ s′2 such that (s′1, s′2) ∈ R,

if s2
ι−→ s′2, then there is a transition s1

ι
↪−→ s′1 such that (s′1, s′2) ∈ R.

Two states s and t are bisimilar if and only if there is a bisimulation that
relates them. From now on the relation ∼t will be referred to as strong timed
simulation when ↪−→=−→, ∼u will be referred to as strong untimed simulation
when ↪−→=−→u, ≈t will be referred to as weak timed simulation when ↪−→= =⇒,
and ≈u will be referred to as weak timed simulation when ↪−→= =⇒u.

s1

s2

1

a

1

t1

t2

t3

1

1

a

1

Figure 4.1: States s1 and t1 are untimed bisimilar.

Example 4.10
Figure 4.1 shows two TLTSs where the states s1 and t1 are untimed bisimilar.

States s1 and t1 are not timed bisimilar because of the transition s1
a−→ s2

and t1
a−�−→.

According to Definition 4.8 s1 and t1 are not strongly untimed bisimilar
because s1

a−→ s2 and t1
a−�−→.

According to strong untimed bisimilarity from Definition 4.9 we have that
s1 ∼u t1 since we abstract away from delay. Both s1 and t1 can perform a−→u.
To show that s1 ∼u t1, here is an untimed bisimulation R:

R = {(s1, t1), (s1, t2), (s2, t3)}

The definition for timed traces and untimed traces are separated, because
we can define the untimed traces more explicit than timed traces. By Defini-
tion 4.11 we say that timed traces consist of sequences of actions and 1-delays,
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whereas by Definition 4.12 we say that untimed traces consists only of sequences
of actions because we abstract away from time with the −→u transitions.

Definition 4.11 - Timed Traces
A strong timed trace from a state s is a sequence of ι1 · · · ιn ∈ Lab∗ where
n ≥ 0 such that there exists a sequence of strong transitions

s0
ι1−→ s1

ι2−→ . . .
ιn−1−−−→ sn−1

ιn−→ sn,

for some states s1, . . . , sn.
A weak timed trace from a state s is a sequence of ι1 · · · ιn ∈ (Lab \ {τ})∗

where n ≥ 0 such that there exists a sequence of weak transitions

s0
ι1=⇒ s1

ι2=⇒ . . .
ιn−1===⇒ sn−1

ιn=⇒ sn,

for some states s1, . . . , sn.
We write Traces→(s) for the collection of all strong timed traces of s, and

Traces⇒(s) for the collection of all weak timed traces of s.

Definition 4.12 - Untimed Traces
A strong untimed trace from a state s is a sequence of α1 · · ·αn ∈ Act∗ where
n ≥ 0 such that there exists a sequence of strong untimed transitions

s0
α1−→u s1

α2−→u . . .
αn−1−−−→u sn−1

αn−−→u sn,

for some states s1, . . . , sn.
A weak untimed trace from a state s is a sequence of α1 · · ·αn ∈ (Act\{τ})∗

where n ≥ 0 such that there exists a sequence of strong untimed transitions

s0
α1=⇒u s1

α2=⇒u . . .
αn−1===⇒u sn−1

αn=⇒u sn,

for some states s1, . . . , sn.
We write Traces→u (s) for the collection of all strong untimed traces of s,

and Traces⇒u (s) for the collection of all weak untimed traces of s.

Having defined timed and untimed traces we can now define trace inclusion
in Definition 4.13.

Definition 4.13 - Trace Inclusion
Process s is said to include the traces of process t if and only if

Traces↪→(s) ⊆ Traces↪→(t).

From now on the relation ⊂∼t will be referred to as strong timed trace inclusion
when ↪−→ = −→, ⊂∼u will be referred to as strong untimed trace inclusion when
↪−→ = −→u, ⊂≈t will be referred to as weak timed trace inclusion when ↪−→ = =⇒,
and ⊂≈u will be referred to as weak untimed trace inclusion when ↪−→= =⇒u.
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With trace inclusion defined we can now use this to define trace equivalence
in Definition 4.14 which is the same as having trace inclusion preorder in both
directions.

Definition 4.14 - Trace Equivalence
Process s is said to be trace equivalent to process t if and only if

Traces↪→(s) = Traces↪→(t)

From now on the relation 'Tt
will be referred to as strong timed trace equiva-

lence when ↪−→=−→, uTu
will be referred to as strong untimed trace equivalence

when ↪−→ = −→u, 'Tt
will be referred to as weak timed trace equivalence when

↪−→ = =⇒, and uTu
will be referred to as weak untimed trace equivalence when

↪−→= =⇒u.

Example 4.15
Figure 4.1 shows two TLTSs where the timed traces of t1 is included in s1, i.e.
t1 ⊂∼ s1. Some examples of traces of s1:

{a, a1, 1a, 1a1, · · · }

Some examples of traces of t1:

{1, 11, 1a, 1a1, · · · }

The traces of s1 is not included in t1 because s1
a−→ s2 and t1

a−�−→. However,
if we abstract away from time then s1 'Tu t1 because they both afford the
same untimed trace, namely (a) and the empty trace.

4.4 Timed Generalized Parametric Semantic Relation

In this section we extend the generalized parametric semantic relation from
Definition 3.2 to support both timed and untimed behavioral equivalences and
preorders. We call this a timed generalized parametric semantic relation.

Definition 4.16 - Timed Generalized Parametric Semantic Relation
The timed generalized parametric semantic relation is a direct extension of
Definition 3.2. The relation is extended to take one additional fixed parameter
Time ∈ {timed, untimed}. The other parameters Type, Moves, E, d, k, and m
are the same. Let (Proc, Lab,→) be a TLTS. We redefine w

↪−→ where w ∈ Lab∗

in the following way:
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w
↪−→ def=



w−→ where |w| = 1 if Type = strong, Moves = short, Time = timed,
w−→ where |w| ≥ 1 if Type = strong, Moves = long, Time = timed,
w−→u where |w| = 1 if Type = strong, Moves = short, Time = untimed,
w−→u where |w| ≥ 1 if Type = strong, Moves = long, Time = untimed,
w=⇒ where |w| = 1 if Type = weak, Moves = short, Time = timed,
w=⇒ where |w| ≥ 1 if Type = weak, Moves = long, Time = timed,
w=⇒u where |w| = 1 if Type = weak, Moves = short, Time = untimed,
w=⇒u where |w| ≥ 1 if Type = weak, Moves = long, Time = untimed.

We now have that two states s and t are semantically related written
(s, t) ∈ ∆(Type, Moves, Time, E, d, k,m) if and only if there is a timed gen-
eralized parametric semantic relation with respect to Type, Moves, Time, and
E such that (s, t) ∈ R(d, k,m).

We reuse the rules from Section 3.3 to construct the dependency graph, and
we have the following theorem:

Theorem 4.17
We have that Amin(〈(s, t), d, k,m〉) = 0 on the dependency graph constructed
using the rules shown in Figure 3.2 and Figure 3.3 if and only if (s, t) ∈ ∆(Type,
Moves, Time, E, d, k,m).

Proof. The proof follows from Corollary 3.6.

4.5 Timed HML

In real-time systems we are often interested in verifying that certain properties
will always be satisfied before a specific amount of time has passed. Return-
ing to our previous example, we might wish to verify that anytime the crash
action is performed the inflate action becomes available within 1 time unit.
Modelling such a property as a specification and then testing that specification
against an implementation using some notion of equivalence often feels unnat-
ural, especially if we are only interested in a small part of the system. In this
section we present an extension of HML with timed modalities called Timed
HML (THML), which will allow us to us express the aforementioned property
and similar properties in a more natural way.

Definition 4.18 - THML Syntax
The setMT of THML formulas is obtained by extending the setMX of HML
formulas given in Definition 1.17 with the following timed modalities:

〈d〉F
∣∣∣ [d]F

∣∣∣ 〈〈d〉〉F ∣∣∣ [[d]]F,
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where d ∈ N0 is a time delay.

We can now intuitively express the property that anytime the crash action
is performed the inflate action becomes available within 1 time unit as the
recursive formula

X
max= [crash]

(〈
inflate

〉
tt ∨ 〈1〉

〈
inflate

〉
tt
)
∧ [Act]X.

With this intuition let us now formally define the meaning of the timed modal-
ities.

Definition 4.19 - THML Semantics
The semantics of THML is obtained by extending the semantics of recursive
HML given in Definition 1.18 in the following way:

O〈1〉F (S) = 〈·1·〉OF (S),
O[1]F (S) = [·1·]OF (S),
O〈〈1〉〉F (S) = 〈〈·1·〉〉OF (S),
O[[1]]F (S) = [[·1·]]OF (S),

where use the set operators 〈·1·〉 , [·1·] , 〈〈·1·〉〉 , [[·1·]] : P(Proc) → P(Proc)
which we define as:

〈·1·〉S = {p ∈ Proc | p 1−→ p′ and p′ ∈ S for some p′},

[·1·]S = {p ∈ Proc | p 1−→ p′ implies p′ ∈ S for each p′},

〈〈·1·〉〉S = {p ∈ Proc | p 1=⇒ p′ and p′ ∈ S for some p′},

[[·1·]]S = {p ∈ Proc | p 1=⇒ p′ implies p′ ∈ S for each p′}.

It should be noted that syntactically delays of arbitrary length are allowed,
whereas the semantics is only defined for 1-delays. This is due to the fact that
any THML formula inMT can be expanded into an equivalent formula also in
MT , but where d = 1. For example, we have that

〈3〉F ≡ 〈1〉 〈1〉 〈1〉F.

Example 4.20
Consider the process shown in Figure 4.2. We have the recursively defined
property

X
min= [1] ff ∨ 〈Lab〉X

which is satisfied by a process that cannot delay. We start by applying the
function OFX

to the empty set since we are looking for the minimum fixed-
point:

OFX
(∅) = [·1·] ∅ ∪ ([·1·] ∅ ∩ [·a·] ∅ ∩ [·τ ·] ∅)

= {s2} ∪ ({s2} ∩ {s2} ∩ {s1})
= {s2}
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We now apply OFX
to the set {s2}:

OFX
({s2}) = [·1·] {s2} ∪ ([·1·] {s2} ∩ [·a·] {s2} ∩ [·τ ·] {s2})

= {s2} ∪ ({s2} ∩ {s1, s2} ∩ {s1, s2})
= {s2}

We now have that the set {s2} is the minimum fixed-point of OFX
. Intuitively

we can see that this is correct since s2 can perform a τ -action, and thus cannot
delay, whereas s1 can delay indefinitely. The maximum fixed-point of OFX

is
the set {s1, s2}, which clearly is not the solution that we are looking for in this
case.

s1 s2
a

1 τ

Figure 4.2: A process.





5Implementation

We started the development of Caal as part of our pre-specialization where
we created the visualizer for CCS processes, a verifier for bisimulation and
model checking with HML. We now extend our implementation with more
equivalences and preorders as well as games for them, and we add the language
TCCS to the tool including timed and untimed equivalences and preorders.

Caal is built as a web application in order to avoid the hassle of installation
and also to make it easy to access, effectively reducing the time spent on
getting started during valuable lecture time, since it is designed for educational
purposes. The tool is available at

http://caal.cs.aau.dk.

Caal is built with TypeScript, a typed superset of JavaScript that compiles
into plain JavaScript [12]. We welcome any contributions to Caal and the tool
is licensed under the MIT License.

5.1 Successor Generation

We already have strong and weak successor generators for CCS, and the suc-
cessor generator for TCCS is extended directly from the successor generator for
CCS. We reuse the CCS successor generator to generate all action transitions
and then add delay transitions to them. By the SOS rules in Definition 4.3 we
see that delay transitions do not resolve nondeterministic choices unlike action
transitions, and delay transitions delay an entire parallel system. This means
that any TCCS process can perform at most one delay transition. If the current
TCCS state can perform a τ -transition we do not add any delay transition to
the result, if the current TCCS state cannot perform a τ -transition we compute
the 1 time unit delay successor.

For all the delay prefixes in a current process state s, the delay successor
s′ from the transition s

1−→ s′ will subtract 1 from all the currently guarding
delay prefixes in s. If the state does not contain any delay prefixes, then the
delay successor is a self-loop s 1−→ s.

We can use the strong timed successor generator to form the basis of the
weak version and also the untimed successor generator. We had previously
implemented a weak successor generator for CCS. The weak successor gener-
ator uses a strong successor generator to generate the reflexive and transitive
closure of τ transitions. We change this successor generator to a more generic
version which we will refer to as an abstracting successor generator. The ab-
stracting successor generator has two parameters, another successor generator
to create abstracting successors with, and one or more transitions that should
be abstracted away from.

Weak timed generator To create the weak timed successor generator, we
give the abstracting successor generator the timed successor generator
and tell it to abstract away from τ−→ transitions. The result will thus
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contain weak action successors and also weak delay successors that all
abstract away from τ−→ transitions.

Strong untimed generator To create the strong untimed successor gen-
erator, we give the abstracting successor generator the timed successor
generator and tell it to abstract away from 1−→ transitions. The result
will thus contain strong untimed action successors that all abstract away
from 1−→ transitions.

Weak untimed generator To create the weak untimed successor genera-
tor, we give the abstracting successor generator the timed successor gen-
erator and tell it to abstract away from τ−→ and 1−→ transitions. The result
will thus contain weak action successors that all abstract away from τ−→
and 1−→ transitions.

5.2 Visualization

The visualizer allows exploration of the LTS or the TLTS of a given process
with different successor generators. The visualizer can already display the
strong and weak transition relations. We add the four new transition relations
discussed in Section 5.1 to the visualizer. Figure 5.1 shows the visualizer using
the strong timed successor generator to display the TLTS for the Impl process
of the airbag example from Section 4.1.

Figure 5.1: Visualization of a TLTS.

The states in the TLTS can be selected by clicking them. The selected
state is highlighted in red and the transitions available from that state will
be displayed in the table below the TLTS. By clicking the “Options”-button
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it is possible to select which transition relation should be used, as shown in
Figure 5.2.

Figure 5.2: Transitions relations for visualization.

We have some different options for the displayed TLTS:

Zoom The slider at the top left will zoom in on the currently selected state.
Sometimes the TLTS becomes too cluttered to tell the different states
and transitions apart, which is when zooming helps. When zoomed in,
the TLTS will automatically be centered on the currently selected state.

Expand Depth The number at the top right is the number of states to
expand the TLTS with. For example, if we have a depth of five, then all
states which are up to five transitions away from the currently selected
state will be displayed.

Lock The padlock at the top right will lock/unlock the TLTS. The states
in the TLTS are automatically positioned, but may sometimes become
cluttered if there are too many states or transitions. Locking the TLTS
makes it possible to manually rearrange the states in the TLTS.

Export The download button at the top right will download an image of
the currently displayed TLTS.

5.3 Verification

The verifier in Caal already has the ability to verify strong and weak bisim-
ulation between CCS processes as well as model checking with HML [14]. We
extend the verifier with additional equivalences and preorders for CCS and
timed/untimed versions for TCCS as well as THML. The verifier can be seen
inFigure 5.3.

5.3.1 Equivalences and Preorders
We add the following equivalences and preorders to the verifier:

• simulation,

• simulation equivalence,

• trace inclusion, and
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Figure 5.3: Verification of untimed trace equivalence and bisimulation.

• trace equivalence.

The implementation of simulation consists of reusing parts of the implemen-
tation for bisimulation. Instead of allowing moves on either side, that can be
matched with a move on the opposite side, we only allow moves on the left side
that can be matched by a move on the right side. For simulation equivalence
we apply the simulation preorder in both directions as defined in Definition 1.4.

The dependency graph for trace inclusion is made using a simplified version
of the generalized parametric semantic relation. Trace inclusion only uses a few
of the construction rules from Figure 3.3 since its game characterization consists
of a single round where the attacker plays a long move on the left. For trace
equivalence we apply trace inclusion preorder in both directions as defined in
Definition 1.10.

All the verifications of CCS equivalences and preorders can be reused for
TCCS. The definitions for equivalences and preorders on TLTSs are very sim-
ilar to the definitions on LTSs. In fact we only add one more case to each of
them, namely the 1-delay transition. Because of this we say that delay is a
subclass of action with a unique action name not in Act. To make all the dif-
ferent equivalences and preorders we only need to provide the verifier with the
correct successor generator effectively adding strong/weak and timed/untimed
equivalences and preorders for TCCS.

5.3.2 Timed HML
Verification of THML formulas is performed using the dependency graph con-
struction rules for HML formulas described in [14]. The implementation has
been reused, but the dependency graph is constructed using the successor gen-
erators for TCCS.

All formulas containing timed modalities are expanded into equivalent for-
mulas using only 1-delays during parsing. For example, the formula 〈3〉F is
expanded into the formula 〈1〉 〈1〉 〈1〉F . Timed modalities may also contain
intervals using the syntax 〈dmin, dmax〉 (analogous for the other timed modal-
ities) where dmin, dmax ∈ N0 and dmin ≤ dmax. A formula such as 〈0, 2〉F
is expanded into the formula F ∨ 〈1〉F ∨ 〈1〉 〈1〉F . The modalities [d]F and
[[d]]F are expanded using a conjunction instead of a disjunction.
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5.4 Game Implementation

We have implemented the following games:

• strong/weak simulation,

• strong/weak bisimulation,

• strong/weak trace inclusion.

In Section 6.5.2 we go into detail with the design and all the features of
the strong bisimulation game by giving an example of a game. The weak
bisimulation game is very similar to the strong version in terms of design.
The simulation game is also very similar to the bisimulation game, but for
simulation we only allow the attacker to make moves on the left LTS and the
defender is only allowed to make moves on the right LTS.

The rules for the trace inclusion game which we showed in the form of a
generalized parametric semantic relation in Section 3.2 specify that the attacker
plays a trace i.e. a long move, and the defender has to respond with the same
trace in the other LTS. The game only runs for one round. Instead of creating
the game with two LTSs, we generate a trace in the form of an HML formula
which only the left LTS satisfies, and then play the HML game for the right
LTS on the formula. If only one process satisfies the trace ab , then the HML
formula trace looks like 〈a〉 〈b〉 tt.

5.4.1 Computer Strategy
We give the player the option to assume the role of either the attacker or the
defender and the computer will assume the opposite role. At all times during
the game, we know which role has a universal winning strategy. We use this
information for the computer to make clever moves.

Winning attack The computer has a universal winning attack strategy,
meaning the current node has the assignment 1. The computer can then
pick any edge leading to a node with the assignment 1 and would still
have a universal winning strategy. However it can be possible for the
dependency graph to have an edge going back to a previously visited
node, i.e. a loop.
The computer finds and picks the edge which leads to a node with the
lowest possible level, in order to win quickly.

Losing attack The computer does not currently have a universal winning
strategy, which means levels on nodes are not available. It will instead
try to confuse its opponent.
The computer looks ahead on the options for the opponent by following
the potential edges the computer can pick. The computer will then find
the play which yields the highest ratio of 1-assignments for the defender
to pick between. If there are multiple plays with the same ratio, the
computer will pick a random one of these; this will make the computer
randomly try something new.
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Winning defend The nodes will not have a level in this case. The com-
puter will then pick any of the nodes which has a 0-assignment which will
yield a winning play at some point.

Losing defend The computer does not have a universal winning strategy,
but will attempt to keep the game going for as long as possible.
The computer finds and picks the node with the highest possible level, in
order to keep the game going for as long as possible. If there are multiple
nodes with the same level, the computer will pick a random one of these.



6Caal Tutorial

This tutorial gives an informal introduction to the main features of Caal and
how to use them. Caal supports the process algebras Calculus of Commu-
nicating Systems (CCS) and Timed CCS (TCCS), and both equivalence and
model checking analysis of processes through verification and games. Caal
consists of four different modules; an editor module for modelling processes,
a module for visualization of processes, a module for equivalence and model
checking, and a game module. Caal is available at:

http://caal.cs.aau.dk.

6.1 The Language CCS

CCS is a process algebra used to model concurrent systems. We shall now
informally introduce CCS.

The most basic process of all is the 0 (or nil) process. It cannot perform
any action whatsoever and thus stops all computation. The most basic process
constructor in CCS is action prefixing. The formation rule for action prefixing
is as follows:

If P is a process and a is a label, then a.P is a process.

Using the formation rule for action prefixing and the 0 process we can build
two example processes:

shake.0 shake.walk.0 .

The first process can only perform the shake action and then dies (becomes
the 0 process). The second process is a more complex process, which after
performing the shake action, can also perform the walk action. Names can also
be assigned to processes. For example, we can give the second process a name:

Boy = shake.walk.0 . (6.1)

Naming processes allows us to introduce recursive definitions of process
behaviors. For example, we can define a recursive process specification as
follows:

Tree = shake.′apple.Tree .

This tree can be shaken which causes it to deliver an apple and afterwards
returns to its initial state where it can be shaken again. Note the bar over
′apple (the apostrophe denotes a bar in Caal), which indicates that it is an
output action. This tree only allows one type of apple. In order for the tree
to support multiple colors of apples, we use the choice operator. Now the tree
can be defined as:

ColorTree = shake.(′greenapple.ColorTree + ′redapple.ColorTree) . (6.2)

The idea is that after the tree has been shaken, it can deliver either a green
or a red apple. In general, the formation rule for choice is:
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If P and Q are processes, then P +Q is also a process.

The process P +Q is able to do either P or Q, but not both. As soon as P
is performed any further execution of Q is preempted and vice versa.

Another operator is the parallel composition operation. Composition de-
scribes two or more processes running in parallel and possibly interacting with
each other. For example, if we continue the example from Equation 6.1, we can
shake the tree in order to receive an apple and then walk to the next tree after
an apple has fallen to the ground. This can be described by the CCS process:

Girl = ′shake.apple.′walk.Girl . (6.3)

The CCS expression Tree | Girl describes a system consisting of two pro-
cesses; the tree and the girl. These two processes can communicate through
their shared communication channels; shake and apple.

However, neither the girl nor tree are required to communicate with each
other. They could communicate over their channels with any other processes
they have been composed with, or simply perform the shake, apple, or walk
actions directly without communication.

P and Q may proceed independently or they may communicate through
shared channels.

When two processes communicate through the same input and output ac-
tion the resulting action is called a τ -action. It might be best if only one
had access to the apples that fall from the tree. CCS allows this through an
operation called restriction. This allows us to hide certain channels from the
environment. If we continue from Equation 6.3 and expand the example to
accept red or green apples:

Man = ′shake.(Man1 + Man2) , (6.4)
Man1 = redapple.′walk.Man ,

Man2 = greenapple.′throw.Man .

Now we can define the Orchard using the ColorTree from Equation 6.2 and the
refined Man from Equation 6.4:

Orchard = (ColorTree | Man) \ {shake, redapple, greenapple} . (6.5)

The restricted channels shake, redapple, and greenapple may only be used
for communication between the tree and the man. Their scope is restricted
to the process Orchard. In general, the formation rule for restriction can be
described as follows:

If P is a process and L is set of channel names, then P \ L is a process.

In P \ L the channel names in L can only be used to communicate within
P . It might be beneficial for the orchard to have access to other sorts of fruit.
This can be done by defining a generic orchard that can be shaken, then drop
its fruit and reset:

GenericOrchard = shake.′fruit.GenericOrchard .
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Through appropriate renaming of the GenericOrchard it is possible to ob-
tain a more specific Orchard. For example:

PearOrchard = GenericOrchard [pear/fruit] .

PearOrchard is a process that behaves like GenericOrchard but outputs
pears instead of a generic fruit. The renaming operation can be described as:

If P is a process and f is a function from labels to labels, then P [f ] is a
process.

6.2 The Language TCCS

TCCS is an extension of CCS with time, which means that we still have all
the syntactical elements of CCS but with a new syntactic element, the delay
prefixing operator. With this operator we can model processes like

5.a.0 ,

which means that after delaying for 5 time units the a-action becomes available.
We extend the Orchard example and add time to it. We add a time con-

straint to the tree specifying that if the falling apple has not been caught
within 3 time units then it falls to the ground. Extending the ColorTree from
Equation 6.2 we get:

ColorTree = shake.ColorTree1 ,

ColorTree1 = ′greenapple.ColorTree + ′redapple.ColorTree + 3.tau.ColorTree .

The ColorTree has the choice of dropping either a green or a red apple. If
the tree drops a particular apple then it commits to that choice, but simply
delaying will not commit to any choice. For example, after delaying for 2 time
units the tree can still drop green or red apples.

However, after 3 time units the τ -action becomes available which prevents
any further delays. An action must be performed immediately when a τ -action
is available. If no one is ready to catch the apple within 3 time units the apple
falls to the ground.

Let us say that after the man has shaken the tree he needs to rest for 2
time units before he is ready to catch an apple. Extending the Man from
Equation 6.4 we get:

Man = ′shake.2.(Man1 + Man2) .

It is not possible for the man to rest for more than 2 time units because a
handshake is available between the Man and the ColorTree (i.e. a τ -action
becomes available). We can also define an unfit man who requires a longer
break after shaking the tree:

SlowMan = ′shake.5.(Man1 + Man2) .

If we define the orchard as

Orchard = (ColorTree | SlowMan) \ {shake, redapple, greenapple} .

then the slow man will never be able to catch an apple since his required break
makes him unable to catch the apples before they fall to the ground.
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6.3 Editor

The editor is used to input CCS and TCCS programs. The editor has full
support for CCS and TCCS syntax, and features live syntax checking to assist
the user if syntactical errors occur. The “Parse”-button will notify the user of
any contextual errors, such as referencing an undefined process. Furthermore,
Caal supports saving of the project to both a local file and the browser cache,
as well as an autosave feature that allows the user to restore unsaved work if
an unexpected error should occur. Using the editor we can input the examples
from Equation 6.2 and Equation 6.4 as shown in Figure 6.1.

Figure 6.1: Editor.

6.4 Verification

After having defined a process in the editor we may want to verify its correct-
ness. We introduce the several forms of verification that Caal supports.

6.4.1 Equivalence Checking
Caal supports the following equivalences and preorders:

• simulation,

• simulation equivalence,

• bisimulation,

• trace inclusion, and

• trace equivalence.
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This section focuses on bisimulation. Strong bisimulation is a notion re-
lating two processes such that whenever one of the processes can perform an
α-action the other process must also be able to perform an α-action. The
resulting pair must again be related by strong bisimulation.

We also have the notion of weak bisimulation. We use the term “weak” to
indicate that we abstract away from τ -actions. Whenever one of the processes
can perform an α-action the other process also must be able to perform a
matching α-action, where it is allowed to perform zero or more τ -actions before
and after performing the α-action. The resulting pair must again be related
by weak bisimulation.

Example 6.1
We have the CCS processes:

Man = ′shake.(redapple.walk.Man + greenapple.walk.Man) ,
AppleTree = shake.(′greenapple.AppleTree + ′redapple.AppleTree) ,

Orchard = (AppleTree | Man) \ {shake, redapple, greenapple} ,
Spec = walk.Spec ,

We want to check if the processes Orchard and Spec are strongly or weakly
bisimilar. Figure 6.2 shows the result of the verification. The processes Orchard
and Spec are not strongly bisimilar, but they are weakly bisimilar, as indicated
by the red cross and the green check mark, respectively.

Figure 6.2: Verification of bisimulation.

6.4.2 Model Checking
Caal supports model checking through use of recursive Hennessy-Milner Logic
(HML) formulas. HML formulas are used to check if a given process satisfies
certain properties. For instance we might want to check if our man:

• is always able to walk after receiving an apple,

• is able to shake the tree right now,

• is able to get hold of a red apple.
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Caal has support for the full syntax and semantics of recursive HML, and
also supports formulas with multiple nested variables, with the restriction that
variables are not allowed to be mutually recursive.

X min= <a>X or Y (6.6)
Y max= [b]Y

Equation 6.6 is an example of a supported HML formula.

X min= <a>X or Y (6.7)
Y max= [b]Y and X

Equation 6.7 is an example of an HML formula that is not allowed because Y
refers back to X.

Example 6.2
We have the CCS processes

Man = ′shake.(redapple.walk.Man + greenapple.walk.Man) ,
AppleTree = shake.(′greenapple.AppleTree + ′redapple.AppleTree) ,

Orchard = (AppleTree | Man) \ {shake, redapple, greenapple} .

We want to check if it is possible to reach a state from the Orchard where the
Man will never be able to perform a walk-transition again. We can express this
as the recursively defined property

X min= [[walk]]ff or <->X,

where - is the set of all actions. Figure 6.3 shows the result of the verification.
As we can see, this property is not satisfied, as indicated by the red cross.

Figure 6.3: Verification of a recursive HML formula.

6.4.3 Timed Equivalence and Model Checking
When verifying TCCS we support the same equivalences and preorders as men-
tioned earlier, as well as an extended version of HML with time called Timed
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HML (THML). Strong timed bisimulation is almost the same as regular strong
bisimulation. Whenever a process can make a move by some action α, the other
process must be able to match the move by the same action α. Whenever a
process can make a delay, the other process must be able to match the delay.
The resulting pairs must again be related by strong timed bisimulation.

Just like it can be useful to abstract away from τ in CCS, it can be useful
to abstract away from time in TCCS, which is called “untimed”.

Example 6.3
We have the TCCS processes:

Man = ′shake.2.(redapple.walk.Man + greenapple.walk.Man) ,
Tree = shake.(′greenapple.Tree + ′redapple.Tree + 3.tau.Tree) ,

Orchard = (Tree | Man) \ {shake, redapple, greenapple} ,
Spec = walk.Spec ,

We want to check if the Orchard is weakly timed or weakly untimed bisimilar
to Spec. The Orchard is not weakly timed bisimilar to Spec, but they are
weakly untimed bisimilar shown in Figure 6.4.

Figure 6.4: Verification of bisimulation with time.

As seen in Example 6.2, HML allows us to verify that the system satisfies
certain properties, but it is often interesting to verify that the system does so
with respect to time.

Example 6.4
We want to verify that the Man from Example 6.3 can never receive a red apple
if he waits for less than 2 time units after shaking the tree. We can express
this property as the recursively defined THML formula:

X max= [’shake]<0,1>[redapple]ff and X;

As seen in Figure 6.5 the property is satisfied.
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Figure 6.5: Verification of a recursive THML formula.

6.5 Debugging Options

Verifying properties for CCS processes might not always yield the expected
result. This might mean a bug is present in the CCS processes. We introduce
the tools available for debugging in Caal.

6.5.1 Explorer
The explorer makes it possible to graphically explore the Labelled Transition
System (LTS) generated by a process. To begin, the desired process is selected
from the drop-down menu at the top left. The outgoing transitions from the
selected process are then displayed. The explorer is shown in Figure 6.6.

Figure 6.6: Explorer.
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The states in the LTS can be selected by clicking them. The currently
selected state is colored red and the outgoing transitions from that state will
be displayed in the table below the LTS.

A number of different options are available in the explorer:

Zoom The slider at the top left will zoom in on the currently selected state.
Sometimes the LTS becomes too large to tell the different states and tran-
sitions apart, which is when zooming helps. When zoomed in, the LTS
will automatically be centered on the currently selected state whenever
it is changed.

Expand Depth The number at the top right is the number of states to
expand the LTS with. For example, if we have a depth of five, then all
states which are up to five transitions away from the currently selected
state will be displayed.

Lock The padlock at the top right will lock/unlock the LTS. The states
in the LTS are automatically positioned, but may sometimes become
cluttered if there are too many states or transitions. Locking the LTS
makes it possible to manually rearrange the states in the LTS.

Export The download button at the top right will download an image of
the currently displayed LTS.

Transitions The LTS can be displayed using either strong or weak transi-
tions. By default the LTS displayed is using strong transitions. In the
case of TCCS, there are also options for timed and untimed transitions.

Collapse The LTS can be collapsed using either strong or weak bisimula-
tion collapse. Strong bisimulation collapse means that all states which
are strongly bisimilar are collapsed into a single state. Figure 6.7 shows
the Orchard with strong bisimulation collapse, and Figure 6.8 shows the
Orchard with weak bisimulation collapse. In cases where the LTS be-
comes very large the zoom option might not be sufficient. In such cases
all unwanted actions can be relabelled to τ and removed using weak
bisimulation collapse.

Figure 6.7: Orchard with strong bisimulation collapse.



74 CHAPTER 6. CAAL TUTORIAL

Figure 6.8: Orchard with weak bisimulation collapse.

6.5.2 Games for Equivalences and Preorders
Caal supports games for the following equivalences and preorders:

• strong/weak bisimulation,

• strong/weak simulation, and

• strong/weak simulation equivalence.

Furthermore, Caal also has games for the timed and untimed variations of
the above equivalences and preorders. In this section we will focus on the game
for strong bisimulation. The games for the other equivalences and preorders
are similar, but with different rules.

The strong bisimulation game consists of an “attacker”, a “defender”, and
two processes s and t to play on. The goal of the attacker is to show that the
processes are not strongly bisimilar, and the goal of the defender is to show
that they are. The game is played over a number of rounds, where each round
starts in a pair of states called the current configuration. Initially, the current
configuration will be (s, t). Each round is played according to the following
rules:

1. The attacker performs a transition under some action α from s to s′ or
from t to t′. If the attacker cannot perform any transition the defender
wins.

2. The defender must now respond with a transition.

• If the attacker played s to s′, then the defender must perform a
transition t to t′ under the same action α. If the defender cannot
perform any transitions, then the attacker wins.

• If the attacker played t to t′, then the defender must perform a
transition s to s′ under the same action α. If the defender cannot
perform any transitions, then the attacker wins.

3. The game continues for another round with the pair (s′, t′) as the current
configuration.

If a cycle is detected in the game, i.e. if we reach a configuration (s′, t′)
which has previously been the current configuration the defender wins the
game.

If the attacker has a universal winning strategy, then s and t are not strongly
bisimilar. If the defender has a universal winning strategy, then s and t are
strongly bisimilar. If a player has a universal strategy, then that player will
always be able to win regardless of what the other player does.
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We show an example of a strong bisimulation game. Instead of showing the
simple game between the Orchard and Spec processes, we will define a pear
tree to play against the apple tree. We can define the pear tree as a relabelling
of the ColorTree from Equation 6.2:

PearTree = ColorTree [pear/greenapple, pear/redapple] .

Figure 6.9 shows a strong bisimulation game where the player is playing as
attacker against the computer in the defender role.

Figure 6.9: Screenshot of the strong bisimulation game.

The game settings in the top specifies that it is a strong bisimulation game
between the processes PearTree and ColorTree where the player is playing as at-
tacker. We also have the option to restart the game to the (PearTree,ColorTree)
configuration.

The LTSs generated by the processes PearTree and ColorTree are shown in
Figure 6.10, where the current configuration of the game is highlighted in red.
The two LTSs have the same options (e.g. lock, zoom, etc.) as in the explorer.

Figure 6.10: Game LTSs.
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Figure 6.11 shows the different transitions available to the player. It consists
of three columns:

Source The source state of the transition. Can be either the current state
in the left LTS or the current state in the right LTS.

Action The label of the transition.

Target The destination state of the transition.

Figure 6.11: Available transitions.

Figure 6.12 shows the different steps of a full game in the game log. The
initial state of the game log is shown in Figure 6.12a, where the role of the player
and whether or not the player has a universal winning strategy is shown. The
player then knows if a loss was due to a bad move. The game log then prompts
the player to pick a transition.

Figure 6.12b shows the game log after the player has made the attack

PearTree shake−−−→ 4

on the left LTS, where 4 is the identifier of the target state.
Figure 6.12c shows the response of the defender

ColorTree shake−−−→ 6

on the right. The next round of the game starts and the game log shows the
current configuration of the game (4, 6). The player can now attack again on
the left or right.

Figure 6.12d shows the player attacking with the transition

4 pear−−−→ 5

on the left. The defender cannot match the pear transition on the right. The
player wins the game which means that the processes PearTree and ColorTree
are not strongly bisimilar.
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(a) Game log with introduction. (b) Game log after an attack.

(c) Game log after a defend. (d) Game log with a winner.

Figure 6.12: The game log.

6.5.3 HML Game
An HML game consists of an “attacker”, a “defender”, a process s, and a for-
mula F . A play of a game starting from the start state s is a maximal sequence
of configurations formed by the players according to the following rules. Each
round either the attacker or the defender picks a successor configuration if
possible.

• The attacker picks a configuration when the formula is of the form (s, F1∧
F2), or when the choices are either (s, [α]F ) or (s, [[α]]F ).

• The defender picks a configuration when the formula is of the form (s, F1∨
F2), or when the choices are (s, 〈α〉F ) or (s, 〈〈α〉〉F ).

The winner depends on which configuration the game ends in, or alternatively
the context of an infinite play.

• The attacker is the winner in every play ending in a configuration of the
form (s,ff ) or in play in which the defender gets stuck.

• The defender is the winner in every play ending in configuration of the
form (s, tt) or in a play in which the attacker gets stuck.

• The attacker is the winner in every infinite play in context X provided
that X is a defined as a minimum fixed-point: X min= F . The defender is
the winner in every infinite play provided thatX is defined as a maximum
fixed-point: X max= F .
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Figure 6.13 shows an HML game where the user is playing as defender against
the computer.

Figure 6.13: HML Game.

The game consists of a few different elements:

• the process and formula at the top left,

• the LTS in the middle,

• game log at the bottom left, and

• subformula and transition table at the bottom right.

Using Example 6.2 we now want to play an HML game to verify that the
result is correct and that the formula is indeed not satisfied. We have the
Orchard process given by

Man = ′shake.(redapple.walk.Man + greenapple.walk.Man) ,
AppleTree = shake.(′greenapple.AppleTree + ′redapple.AppleTree) ,

Orchard = (AppleTree | Man) \ {shake, redapple, greenapple} ,

and the formula
X min= [[walk]]ff or <->X .

The initial game log can be seen in Figure 6.14a. As it can be seen, we
are playing as defender and we are going to lose, matching the claim from
Figure 6.3 that the formula is not satisfied.

As defender we have to choose which of the disjunctions we want to continue
from. We can pick between two subformulas:
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1. [[walk]]ff and

2. <->X .

Taking case 1 will result in a loss in the next round because the attacker
picks a transition so we reach a false formula as shown in Figure 6.14b. Instead
the defender picks case 2 and picks a transition, resulting in X being unfolded as
it can be seen on Figure 6.14c. The game continues with the defender picking
one of the two cases, each time unfolding X and having to pick a transition as
seen on Figure 6.14d. Figure 6.15 shows the transition table for the defender.
Eventually the game will detect a cycle as it can be seen in Figure 6.14e, which
means the defender loses because we played in a minimum fix-point game.

(a) Game log with introduction. (b) Reaching false formula.

(c) Unfold X. (d) Select a transition.
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(e) Game log with a winner.

Figure 6.14: Game log for HML Game.

Figure 6.15: Transition table.

6.5.4 Distinguishing Formula
HML formulas can also be used to check if two processes are strongly bisimilar.
Two processes are strongly bisimilar if and only if they satisfy the same for-
mulas. This also implies that if two processes are not strongly bisimilar, then
there must exist a formula that distinguishes them.

Example 6.5
We have the processes

Man = ′shake.(redapple.walk.Man + greenapple.walk.Man) ,
FastMan = ′shake.(redapple.(walk.FastMan + FastMan) +

greenapple.(walk.FastMan + FastMan) .

Caal is able to generate a distinguishing formula for two processes. Fig-
ure 6.16 shows a generated distinguishing formula for the two processes Man
and FastMan which are not strongly bisimilar. This is done by clicking the
three vertical dots on the right-hand side and clicking on ‘Distinguishing for-
mula’.
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Figure 6.16: Distinguishing formula.

6.5.5 Distinguishing Trace
Much like the distinguishing formula, Caal can also generate a trace that
distinguishes two processes. When checking whether two processes are trace
equivalent or if one process is a trace inclusion of the other, Caal will output
the distinguishing trace if this is not the case. Figure 6.17 shows a distinguish-
ing trace for the processes Man and FastMan from Example 6.5.

Figure 6.17: Distinguishing trace.

As we can see, the FastMan affords the trace

’shake.greenapple.’shake ,

which the Man does not. The distinguishing trace is given as an HML formula
so that the HML game can be loaded.

6.6 Closing Remarks

Caal is an open source project developed at Aalborg University by Jacob
Karstensen Wortmann, Jesper Riemer Andersen, Nicklas Andersen, Mathias
Munk Hansen, Simon Reedtz Olesen, and Søren Enevoldsen under the super-
vision of Jiří Srba and Kim Guldstrand Larsen.

The source code can be found on GitHub at https://github.com/caal/
caal. We welcome suggestions and bug reports either through the issue tracker
on GitHub, or via e-mail at caal@cs.aau.dk.

https://github.com/caal/caal
https://github.com/caal/caal
mailto:caal@cs.aau.dk




7Conclusion and Future Work

In this project we have extended Caal with additional equivalences and pre-
orders, namely strong and weak variants of simulation, simulation equivalence,
trace inclusion, and trace equivalence. For all of these equivalences and pre-
orders we have implemented interactive games where the user plays a game
against the computer in order to prove or disprove the result of an equivalence
checking problem.

Real-time systems often have strict timing constraints which cannot be
modelled using CCS alone. We extend Caal with support for the timed process
algebra TCCS with discrete time delays. We suggest a special semantics using
delays of 1 time unit only in order to simplify the implementation. However, we
still allow delays of arbitrary length in the syntax. We define timed and untimed
variants of the existing equivalences and preorders in Caal and implement
these. We also extend Caal with games for all of the aforementioned timed
and untimed equivalences and preorders. Furthermore, we implement Timed
HML in Caal, which is a timed variant of recursive HML.

We take advantage of the fact that the game characterizations of different
equivalences and preorders are similar in nature by defining a parameterized
relation, the generalized parametric semantic relation, where the parameters
correspond to the rules of the game characterization of the equivalence or pre-
order that we wish to express. We also show how the problem of determining
if a pair of states are related by a generalized parametric semantic relation
can be reduced to the problem of computing the minimum pre-fixed-point as-
signment on a dependency graph. We compute the minimum pre-fixed-point
assignment using an effective on-the-fly algorithm. Finally, we extend the gen-
eralized parametric semantic relation with an additional parameter, allowing
it to also express timed and untimed equivalences and preorders.

Caal was used in the first half of the course Semantics and Verification at
Aalborg University as a replacement for Edinburgh Concurrency Workbench
(CWB), and was generally very well received. At the end of the first part the
students were asked to rate their experience working with Caal on a scale
from 1 to 9, where 1 is very bad and 9 is very good. The games received an
average score of 7.0, and overall Caal received an average score of 7.3.

In the future we should like to extend the time domain of our TCCS im-
plementation from the set of non-negative natural numbers to the set of non-
negative real numbers. Viewing the flow of time as being continuous is more
natural, but there are several challenges that must be dealt with. Even the
simplest of processes generate uncountably many reachable states, and thus
our current verification engine using dependency graphs cannot be used.

A full implementation of the generalized parametric semantic relation would
also be a valuable extension of Caal, as it would allow us to implement addi-
tional equivalences and preorders along with their respective games in a more
dynamic fashion.

Finally, there are certain areas of Caal where the user experience needs to
be improved. In particular, the user interface of the verification module needs

83
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to be redesigned in order to increase its user-friendliness and to make it more
aesthetically pleasing. There are also certain features, such as importing and
exporting projects using files, which do not work across all browsers.
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